These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36593394)

  • 21. Deep learning and multi-omics approach to predict drug responses in cancer.
    Wang C; Lye X; Kaalia R; Kumar P; Rajapakse JC
    BMC Bioinformatics; 2022 Nov; 22(Suppl 10):632. PubMed ID: 36443676
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AggMapNet: enhanced and explainable low-sample omics deep learning with feature-aggregated multi-channel networks.
    Shen WX; Liu Y; Chen Y; Zeng X; Tan Y; Jiang YY; Chen YZ
    Nucleic Acids Res; 2022 May; 50(8):e45. PubMed ID: 35100418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integrative phenotyping framework (iPF): integrative clustering of multiple omics data identifies novel lung disease subphenotypes.
    Kim S; Herazo-Maya JD; Kang DD; Juan-Guardela BM; Tedrow J; Martinez FJ; Sciurba FC; Tseng GC; Kaminski N
    BMC Genomics; 2015 Nov; 16():924. PubMed ID: 26560100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Deep Learning-Based Multi-Omics Integration Robustly Predicts Survival in Liver Cancer.
    Chaudhary K; Poirion OB; Lu L; Garmire LX
    Clin Cancer Res; 2018 Mar; 24(6):1248-1259. PubMed ID: 28982688
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Deep latent space fusion for adaptive representation of heterogeneous multi-omics data.
    Zhang C; Chen Y; Zeng T; Zhang C; Chen L
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35079777
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Contrastively generative self-expression model for single-cell and spatial multimodal data.
    Zhang C; Yang Y; Tang S; Aihara K; Zhang C; Chen L
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37507114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Using empirical biological knowledge to infer regulatory networks from multi-omics data.
    Pačínková A; Popovici V
    BMC Bioinformatics; 2022 Aug; 23(1):351. PubMed ID: 35996085
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The performance of deep generative models for learning joint embeddings of single-cell multi-omics data.
    Brombacher E; Hackenberg M; Kreutz C; Binder H; Treppner M
    Front Mol Biosci; 2022; 9():962644. PubMed ID: 36387277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computational approaches for network-based integrative multi-omics analysis.
    Agamah FE; Bayjanov JR; Niehues A; Njoku KF; Skelton M; Mazandu GK; Ederveen THA; Mulder N; Chimusa ER; 't Hoen PAC
    Front Mol Biosci; 2022; 9():967205. PubMed ID: 36452456
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CustOmics: A versatile deep-learning based strategy for multi-omics integration.
    Benkirane H; Pradat Y; Michiels S; Cournède PH
    PLoS Comput Biol; 2023 Mar; 19(3):e1010921. PubMed ID: 36877736
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Harnessing Deep Learning for Omics in an Era of COVID-19.
    Jahanyar B; Tabatabaee H; Rowhanimanesh A
    OMICS; 2023 Apr; 27(4):141-152. PubMed ID: 37043378
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting Deep Learning Based Multi-Omics Parallel Integration Survival Subtypes in Lung Cancer Using Reverse Phase Protein Array Data.
    Takahashi S; Asada K; Takasawa K; Shimoyama R; Sakai A; Bolatkan A; Shinkai N; Kobayashi K; Komatsu M; Kaneko S; Sese J; Hamamoto R
    Biomolecules; 2020 Oct; 10(10):. PubMed ID: 33086649
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two-step multi-omics modelling of drug sensitivity in cancer cell lines to identify driving mechanisms.
    Kusch N; Schuppert A
    PLoS One; 2020; 15(11):e0238961. PubMed ID: 33226984
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GAE-LGA: integration of multi-omics data with graph autoencoders to identify lncRNA-PCG associations.
    Gao M; Liu S; Qi Y; Guo X; Shang X
    Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36305456
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current Advances and Limitations of Deep Learning in Anticancer Drug Sensitivity Prediction.
    Tan X; Yu Y; Duan K; Zhang J; Sun P; Sun H
    Curr Top Med Chem; 2020; 20(21):1858-1867. PubMed ID: 32648840
    [TBL] [Abstract][Full Text] [Related]  

  • 38. moBRCA-net: a breast cancer subtype classification framework based on multi-omics attention neural networks.
    Choi JM; Chae H
    BMC Bioinformatics; 2023 Apr; 24(1):169. PubMed ID: 37101124
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Performance Comparison of Deep Learning Autoencoders for Cancer Subtype Detection Using Multi-Omics Data.
    Franco EF; Rana P; Cruz A; Calderón VV; Azevedo V; Ramos RTJ; Ghosh P
    Cancers (Basel); 2021 Apr; 13(9):. PubMed ID: 33921978
    [TBL] [Abstract][Full Text] [Related]  

  • 40. SADLN: Self-attention based deep learning network of integrating multi-omics data for cancer subtype recognition.
    Sun Q; Cheng L; Meng A; Ge S; Chen J; Zhang L; Gong P
    Front Genet; 2022; 13():1032768. PubMed ID: 36685873
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.