BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36593419)

  • 1. Proteostasis in ice: the role of heat shock proteins and ubiquitin in the freeze tolerance of the intertidal mussel, Mytilus trossulus.
    Gill LT; Kennedy JR; Marshall KE
    J Comp Physiol B; 2023 Mar; 193(2):155-169. PubMed ID: 36593419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Drivers of plasticity in freeze tolerance in the intertidal mussel
    Kennedy JR; Harley CDG; Marshall KE
    J Exp Biol; 2020 Dec; 223(Pt 24):. PubMed ID: 33214314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adjusting the thermostat: the threshold induction temperature for the heat-shock response in intertidal mussels (genus Mytilus) changes as a function of thermal history.
    Buckley BA; Owen ME; Hofmann GE
    J Exp Biol; 2001 Oct; 204(Pt 20):3571-9. PubMed ID: 11707506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocean acidification increases susceptibility to sub-zero air temperatures in ecosystem engineers and limits poleward range shifts.
    Thyrring J; Macleod CD; Marshall KE; Kennedy J; Tremblay R; Harley CDG
    Elife; 2023 Apr; 12():. PubMed ID: 37039622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for protein damage at environmental temperatures: seasonal changes in levels of ubiquitin conjugates and hsp70 in the intertidal mussel Mytilus trossulus.
    Hofmann G; Somero G
    J Exp Biol; 1995; 198(Pt 7):1509-18. PubMed ID: 9319406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress.
    Tomanek L; Zuzow MJ
    J Exp Biol; 2010 Oct; 213(Pt 20):3559-74. PubMed ID: 20889836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sirtuins regulate proteomic responses near thermal tolerance limits in the blue mussels
    Vasquez MC; Beam M; Blackwell S; Zuzow MJ; Tomanek L
    J Exp Biol; 2017 Dec; 220(Pt 23):4515-4534. PubMed ID: 29025872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A single heat-stress bout induces rapid and prolonged heat acclimation in the California mussel,
    Moyen NE; Crane RL; Somero GN; Denny MW
    Proc Biol Sci; 2020 Dec; 287(1940):20202561. PubMed ID: 33290677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms underlying insect freeze tolerance.
    Toxopeus J; Sinclair BJ
    Biol Rev Camb Philos Soc; 2018 Nov; 93(4):1891-1914. PubMed ID: 29749114
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resilience in Greenland intertidal Mytilus: The hidden stress defense.
    Clark MS; Peck LS; Thyrring J
    Sci Total Environ; 2021 May; 767():144366. PubMed ID: 33434840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological responses to heat stress in an invasive mussel Mytilus galloprovincialis depend on tidal habitat.
    Collins CL; Burnett NP; Ramsey MJ; Wagner K; Zippay ML
    Mar Environ Res; 2020 Feb; 154():104849. PubMed ID: 32056704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular evidence of intertidal habitats selecting for repeated ice-binding protein evolution in invertebrates.
    Box ICH; Matthews BJ; Marshall KE
    J Exp Biol; 2022 Mar; 225(Suppl_1):. PubMed ID: 35258616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The physiological effects of oil, dispersant and dispersed oil on the bay mussel, Mytilus trossulus, in Arctic/Subarctic conditions.
    Counihan KL
    Aquat Toxicol; 2018 Jun; 199():220-231. PubMed ID: 29660694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The environmentally tuned transcriptomes of Mytilus mussels.
    Lockwood BL; Connor KM; Gracey AY
    J Exp Biol; 2015 Jun; 218(Pt 12):1822-33. PubMed ID: 26085660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Repeated freezing induces oxidative stress and reduces survival in the freeze-tolerant goldenrod gall fly, Eurosta solidaginis.
    Doelling AR; Griffis N; Williams JB
    J Insect Physiol; 2014 Aug; 67():20-7. PubMed ID: 24910457
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat stress in the intertidal: comparing survival and growth of an invasive and native mussel under a variety of thermal conditions.
    Schneider KR
    Biol Bull; 2008 Dec; 215(3):253-64. PubMed ID: 19098146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freshening increases the susceptibility to heat stress in intertidal mussels (Mytilus edulis) from the Arctic.
    Nielsen MB; Vogensen TK; Thyrring J; Sørensen JG; Sejr MK
    J Anim Ecol; 2021 Jun; 90(6):1515-1524. PubMed ID: 33713446
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta).
    Fisker KV; Holmstrup M; Malte H; Overgaard J
    J Exp Biol; 2014 Nov; 217(Pt 21):3843-52. PubMed ID: 25214492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The freeze-thaw stress response of the yeast Saccharomyces cerevisiae is growth phase specific and is controlled by nutritional state via the RAS-cyclic AMP signal transduction pathway.
    Park JI; Grant CM; Attfield PV; Dawes IW
    Appl Environ Microbiol; 1997 Oct; 63(10):3818-24. PubMed ID: 9327544
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mytilus trossulus hsp70 as a biomarker for arsenic exposure in the marine environment: laboratory and real-world results.
    La Porte PF
    Biomarkers; 2005; 10(6):417-28. PubMed ID: 16308266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.