BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

450 related articles for article (PubMed ID: 36593951)

  • 1. Nanoparticles augment the therapeutic window of RT and immunotherapy for treating cancers: pivotal role of autophagy.
    Wu YH; Chen RJ; Chiu HW; Yang LX; Wang YL; Chen YY; Yeh YL; Liao MY; Wang YJ
    Theranostics; 2023; 13(1):40-58. PubMed ID: 36593951
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoscale Metal-Organic Frameworks for Cancer Immunotherapy.
    Ni K; Luo T; Nash GT; Lin W
    Acc Chem Res; 2020 Sep; 53(9):1739-1748. PubMed ID: 32808760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting autophagy-regulative nanomaterials for activation of dendritic cells enables reinforced cancer immunotherapy.
    Guan YH; Wang N; Deng ZW; Chen XG; Liu Y
    Biomaterials; 2022 Mar; 282():121434. PubMed ID: 35202930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging role of autophagy in anti-tumor immunity: Implications for the modulation of immunotherapy resistance.
    Jiang T; Chen X; Ren X; Yang JM; Cheng Y
    Drug Resist Updat; 2021 May; 56():100752. PubMed ID: 33765484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanomaterial-Based Modulation of Tumor Microenvironments for Enhancing Chemo/Immunotherapy.
    Le QV; Suh J; Oh YK
    AAPS J; 2019 May; 21(4):64. PubMed ID: 31102154
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of autophagy fires up the cold tumor microenvironment to improve cancer immunotherapy.
    Jin Z; Sun X; Wang Y; Zhou C; Yang H; Zhou S
    Front Immunol; 2022; 13():1018903. PubMed ID: 36300110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia-modulatory nanomaterials to relieve tumor hypoxic microenvironment and enhance immunotherapy: Where do we stand?
    Yuan CS; Deng ZW; Qin D; Mu YZ; Chen XG; Liu Y
    Acta Biomater; 2021 Apr; 125():1-28. PubMed ID: 33639310
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of autophagy in initiation, progression, TME modification, diagnosis, and treatment of esophageal cancers.
    Zhou S; Sun X; Jin Z; Yang H; Ye W
    Crit Rev Oncol Hematol; 2022 Jul; 175():103702. PubMed ID: 35577254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy.
    Galluzzi L; Bravo-San Pedro JM; Demaria S; Formenti SC; Kroemer G
    Nat Rev Clin Oncol; 2017 Apr; 14(4):247-258. PubMed ID: 27845767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining Nanomedicine and Immunotherapy.
    Shi Y; Lammers T
    Acc Chem Res; 2019 Jun; 52(6):1543-1554. PubMed ID: 31120725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy.
    Zheng Z; Su J; Bao X; Wang H; Bian C; Zhao Q; Jiang X
    Front Immunol; 2023; 14():1247268. PubMed ID: 37600785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of nanotechnology in reversing therapeutic resistance and controlling metastasis of colorectal cancer.
    Ren SN; Zhang ZY; Guo RJ; Wang DR; Chen FF; Chen XB; Fang XD
    World J Gastroenterol; 2023 Apr; 29(13):1911-1941. PubMed ID: 37155531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoparticle-Based Nanomedicines to Promote Cancer Immunotherapy: Recent Advances and Future Directions.
    Liu J; Zhang R; Xu ZP
    Small; 2019 Aug; 15(32):e1900262. PubMed ID: 30908864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Nanoplatforms for Immunotherapy Applications Targeting the Tumor Microenvironment.
    Zhang N; Zhou J; Li S; Cai W; Ru B; Hu J; Liu W; Liu X; Tong X; Zheng X
    Mol Pharm; 2024 Feb; 21(2):410-426. PubMed ID: 38170627
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanomaterials: Breaking through the bottleneck of tumor immunotherapy.
    Kang Y; Li S
    Int J Biol Macromol; 2023 Mar; 230():123159. PubMed ID: 36610572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy.
    Wei G; Zhang H; Zhao H; Wang J; Wu N; Li L; Wu J; Zhang D
    Cancer Lett; 2021 Jul; 511():68-76. PubMed ID: 33957184
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer immunotherapy by immune checkpoint blockade and its advanced application using bio-nanomaterials.
    Yadav D; Kwak M; Chauhan PS; Puranik N; Lee PCW; Jin JO
    Semin Cancer Biol; 2022 Nov; 86(Pt 2):909-922. PubMed ID: 35181474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining precision oncology and immunotherapy by targeting the MALT1 protease.
    Mempel TR; Krappmann D
    J Immunother Cancer; 2022 Oct; 10(10):. PubMed ID: 36270731
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnology-enhanced radiotherapy and the abscopal effect: Current status and challenges of nanomaterial-based radio-immunotherapy.
    Viswanath D; Park J; Misra R; Pizzuti VJ; Shin SH; Doh J; Won YY
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(1):e1924. PubMed ID: 37632203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.