BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36594106)

  • 21. A new high-density (25 electrodes/mm²) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures.
    Wark HA; Sharma R; Mathews KS; Fernandez E; Yoo J; Christensen B; Tresco P; Rieth L; Solzbacher F; Normann RA; Tathireddy P
    J Neural Eng; 2013 Aug; 10(4):045003. PubMed ID: 23723133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of a thin-film peripheral nerve cuff electrode.
    Walter JS; McLane J; Cai W; Khan T; Cogan S
    J Spinal Cord Med; 1995 Jan; 18(1):28-32. PubMed ID: 7640971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Durable scalable 3D SLA-printed cuff electrodes with high performance carbon + PEDOT:PSS-based contacts.
    Doering OM; Vetter C; Alhawwash A; Horn MR; Yoshida K
    Artif Organs; 2022 Oct; 46(10):2085-2096. PubMed ID: 35971860
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness.
    Freeberg MJ; Stone MA; Triolo RJ; Tyler DJ
    J Neural Eng; 2017 Jun; 14(3):036022. PubMed ID: 28287078
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Highly conductive tissue-like hydrogel interface through template-directed assembly.
    Chong J; Sung C; Nam KS; Kang T; Kim H; Lee H; Park H; Park S; Kang J
    Nat Commun; 2023 Apr; 14(1):2206. PubMed ID: 37072411
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rodent model for assessing the long term safety and performance of peripheral nerve recording electrodes.
    Vasudevan S; Patel K; Welle C
    J Neural Eng; 2017 Feb; 14(1):016008. PubMed ID: 27934777
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fascicle specific targeting for selective peripheral nerve stimulation.
    Overstreet CK; Cheng J; Keefer EW
    J Neural Eng; 2019 Nov; 16(6):066040. PubMed ID: 31509815
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A miniaturized cuff electrode for electrical stimulation of peripheral nerves in the freely moving rat.
    Jellema T; Teepen JL
    Brain Res Bull; 1995; 37(5):551-4. PubMed ID: 7633905
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation.
    González-González MA; Kanneganti A; Joshi-Imre A; Hernandez-Reynoso AG; Bendale G; Modi R; Ecker M; Khurram A; Cogan SF; Voit WE; Romero-Ortega MI
    Sci Rep; 2018 Nov; 8(1):16390. PubMed ID: 30401906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Acute in vivo testing of a polymer cuff electrode with integrated microfluidic channels for stimulation, recording, and drug delivery on rat sciatic nerve.
    Elyahoodayan S; Larson C; Cobo AM; Meng E; Song D
    J Neurosci Methods; 2020 Apr; 336():108634. PubMed ID: 32068010
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microneedle cuff electrodes for extrafascicular peripheral nerve interfacing.
    Patel YA; Willsie A; Clements IP; Aguilar R; Rajaraman S; Butera RJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():1741-1744. PubMed ID: 28268663
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Soft electrodes combining hydrogel and liquid metal.
    Shay T; Velev OD; Dickey MD
    Soft Matter; 2018 May; 14(17):3296-3303. PubMed ID: 29670971
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Integration of flexible polyimide arrays into soft extracellular matrix-based hydrogel materials for a tissue-engineered electronic nerve interface (TEENI).
    Spearman BS; Kuliasha CA; Judy JW; Schmidt CE
    J Neurosci Methods; 2020 Jul; 341():108762. PubMed ID: 32413377
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Totally Organic Hydrogel-Based Self-Closing Cuff Electrode for Vagus Nerve Stimulation.
    Terutsuki D; Yoroizuka H; Osawa SI; Ogihara Y; Abe H; Nakagawa A; Iwasaki M; Nishizawa M
    Adv Healthc Mater; 2022 Dec; 11(23):e2201627. PubMed ID: 36148587
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording.
    Zhang Y; Zheng N; Cao Y; Wang F; Wang P; Ma Y; Lu B; Hou G; Fang Z; Liang Z; Yue M; Li Y; Chen Y; Fu J; Wu J; Xie T; Feng X
    Sci Adv; 2019 Apr; 5(4):eaaw1066. PubMed ID: 31086809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A Hydrogel-Based Microfluidic Nerve Cuff for Neuromodulation of Peripheral Nerves.
    Thakur R; Aplin FP; Fridman GY
    Micromachines (Basel); 2021 Dec; 12(12):. PubMed ID: 34945372
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bidirectional peripheral nerve interface and applications.
    Thakor NV; Qihong Wang ; Greenwald E
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6327-6330. PubMed ID: 28269696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Selectivity of afferent microstimulation at the DRG using epineural and penetrating electrode arrays.
    Nanivadekar AC; Ayers CA; Gaunt RA; Weber DJ; Fisher LE
    J Neural Eng; 2019 Dec; 17(1):016011. PubMed ID: 31577993
    [TBL] [Abstract][Full Text] [Related]  

  • 39. "Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
    Christie BP; Freeberg M; Memberg WD; Pinault GJC; Hoyen HA; Tyler DJ; Triolo RJ
    J Neuroeng Rehabil; 2017 Jul; 14(1):70. PubMed ID: 28693584
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Triple crosslinking conductive hydrogels with digitally printable and outstanding mechanical stability for high-resolution conformable bioelectronics.
    Parvini E; Hajalilou A; Lopes PA; Tiago MSM; de Almeida AT; Tavakoli M
    Soft Matter; 2022 Nov; 18(44):8486-8503. PubMed ID: 36321471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.