BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 36594244)

  • 21. Rapid, Biomimetic Degradation of a Nerve Agent Simulant by Incorporating Imidazole Bases into a Metal-Organic Framework.
    Luo HB; Castro AJ; Wasson MC; Flores W; Farha OK; Liu Y
    ACS Catal; 2021 Feb; 11(3):1424-1429. PubMed ID: 33614195
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ultrathin Zirconium Hydroxide Nanosheet-Assembled Nanofibrous Membranes for Rapid Degradation of Chemical Warfare Agents.
    Liao Y; Chen W; Li S; Jiao W; Si Y; Yu J; Ding B
    Small; 2021 Aug; 17(33):e2101639. PubMed ID: 34258857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanically Enhanced Detoxification of Chemical Warfare Agent Simulants by a Two-Dimensional Piezoresponsive Metal-Organic Framework.
    Liu Y; Zhao S; Li Y; Huang J; Yang X; Wang J; Tao CA
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607094
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Decomposition of the Simulant 2-Chloroethyl Ethyl Sulfide Blister Agent under Ambient Conditions Using Metal-Organic Frameworks.
    Kim HH; Seo JY; Kim H; Jeong S; Baek KY; Kim J; Min S; Kim SH; Jeong K
    ACS Appl Mater Interfaces; 2021 Jan; 13(3):3782-3792. PubMed ID: 33461292
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Continuous Flow Composite Membrane Catalysts for Efficient Decomposition of Chemical Warfare Agent Simulants.
    Seo JY; Cho KY; Lee JH; Lee MW; Baek KY
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32778-32787. PubMed ID: 32589390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Aramid nanofibers supported metal-organic framework aerogel for protection of chemical warfare agent.
    Jiang N; Liu H; Zhao G; Li H; Yang S; Xu X; Zhuang X; Cheng B
    J Colloid Interface Sci; 2023 Jun; 640():192-198. PubMed ID: 36863176
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks.
    Ploskonka AM; DeCoste JB
    J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Highly Reactive Heterogeneous Nanofibers Catalyst based on [Mo
    Haddad R
    Curr Org Synth; 2022; 19(7):808-818. PubMed ID: 35232352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Zirconium Hydroxide-coated Nanofiber Mats for Nerve Agent Decontamination.
    Kim S; Ying WB; Jung H; Ryu SG; Lee B; Lee KJ
    Chem Asian J; 2017 Mar; 12(6):698-705. PubMed ID: 28111934
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Synthesis of a Zr-Based Metal-Organic Framework with Spirobifluorenetetrabenzoic Acid for the Effective Removal of Nerve Agent Simulants.
    Park HJ; Jang JK; Kim SY; Ha JW; Moon D; Kang IN; Bae YS; Kim S; Hwang DH
    Inorg Chem; 2017 Oct; 56(20):12098-12101. PubMed ID: 28967745
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Flexible SIS/HKUST-1 Mixed Matrix Composites as Protective Barriers against Chemical Warfare Agent Simulants.
    Peterson GW; Browe MA; Durke EM; Epps TH
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):43080-43087. PubMed ID: 30426748
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Function-Topology Relationship in the Catalytic Hydrolysis of a Chemical Warfare Simulant in Two Zr-MOFs.
    Ghasempour H; Morsali A
    Chemistry; 2020 Dec; 26(72):17437-17444. PubMed ID: 32757398
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Product Inhibition and the Catalytic Destruction of a Nerve Agent Simulant by Zirconium-Based Metal-Organic Frameworks.
    Liao Y; Sheridan T; Liu J; Farha O; Hupp J
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):30565-30575. PubMed ID: 34161064
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porphyrin-Moiety-Functionalized Metal-Organic Layers Exhibiting Catalytic Capabilities for Detoxifying Nerve Agent and Blister Agent Simulants.
    Zhao H; Tao CA; Zhao S; Zou X; Wang F; Wang J
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3297-3306. PubMed ID: 36608147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis of macroscopic monolithic metal-organic gels for ultra-fast destruction of chemical warfare agents.
    Zhou C; Zhang S; Pan H; Yang G; Wang L; Tao CA; Li H
    RSC Adv; 2021 Jun; 11(36):22125-22130. PubMed ID: 35480835
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Doubly Protective MOF-Photo-Fabrics: Facile Template-Free Synthesis of PCN-222-Textiles Enables Rapid Hydrolysis, Photo-Hydrolysis and Selective Oxidation of Multiple Chemical Warfare Agents and Simulants.
    Barton HF; Jamir JD; Davis AK; Peterson GW; Parsons GN
    Chemistry; 2021 Jan; 27(4):1465-1472. PubMed ID: 32875644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zirconium-based MOF nanocrystals confined on amphoteric halloysite nanotubes for promoting the catalytic hydrolysis of an organophosphorus nerve agent simulant.
    Li S; Zhang H; Wu G; Wu J; Hou H
    Dalton Trans; 2023 May; 52(20):6899-6905. PubMed ID: 37158285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In-situ detoxification of schedule-I chemical warfare agents utilizing Zr(OH)
    Imran M; Singh VV; Garg P; Mazumder A; Pandey LK; Sharma PK; Acharya J; Ganesan K
    Sci Rep; 2021 Dec; 11(1):24421. PubMed ID: 34952902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Breaking Down Chemical Weapons by Metal-Organic Frameworks.
    Mondal SS; Holdt HJ
    Angew Chem Int Ed Engl; 2016 Jan; 55(1):42-4. PubMed ID: 26592361
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Layer-by-Layer Fabrication of Core-Shell Fe
    Chen R; Tao CA; Zhang Z; Chen X; Liu Z; Wang J
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43156-43165. PubMed ID: 31652043
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.