These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36594269)

  • 41. Enabling direct compression tablet formulation of celecoxib by simultaneously eliminating punch sticking, improving manufacturability, and enhancing dissolution through co-processing with a mesoporous carrier.
    Paul S; Guo Y; Wang C; Dun J; Calvin Sun C
    Int J Pharm; 2023 Jun; 641():123041. PubMed ID: 37201765
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A novel technique for the visualization of tablet punch surfaces: Characterization of surface modification, wear and sticking.
    Al-Karawi C; Kaiser T; Leopold CS
    Int J Pharm; 2017 Sep; 530(1-2):440-454. PubMed ID: 28779987
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Non-contact Laser Interferometer Method to Characterize Tablet Punches: New Methodology to Assess Surface Roughness.
    Hughes H; Leane M; Wray PS; Tobyn M
    AAPS PharmSciTech; 2023 Oct; 24(7):209. PubMed ID: 37817056
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Prediction of entire tablet formulations from pure powder components' spectra via a two-step non-linear optimization methodology.
    Baranwal Y; Román-Ospino AD; Li J; Razavi SM; Muzzio FJ; Ramachandran R
    Int J Pharm; 2022 Mar; 615():121472. PubMed ID: 35063595
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modeling of Adhesion in Tablet Compression at the Molecular Level Using Thermal Analysis and Molecular Simulations.
    Chaturvedi K; Shah HS; Morris KR; Dave RH
    Mol Pharm; 2022 Jan; 19(1):26-34. PubMed ID: 34905926
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Image analysis quantification of sticking and picking events of pharmaceutical powders compressed on a rotary tablet press simulator.
    Mollereau G; Mazel V; Busignies V; Tchoreloff P; Mouveaux F; Rivière P
    Pharm Res; 2013 Sep; 30(9):2303-14. PubMed ID: 23797462
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Moisture Behavior of Pharmaceutical Powder during the Tableting Process.
    Koumbogle K; Gosselin R; Gitzhofer F; Abatzoglou N
    Pharmaceutics; 2023 Jun; 15(6):. PubMed ID: 37376100
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effect of ultrasonic vibration on the compaction characteristics of ibuprofen.
    Levina M; Rubinstein MH
    Drug Dev Ind Pharm; 2002 May; 28(5):495-514. PubMed ID: 12098839
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Multispectral UV imaging for fast and non-destructive quality control of chemical and physical tablet attributes.
    Klukkert M; Wu JX; Rantanen J; Carstensen JM; Rades T; Leopold CS
    Eur J Pharm Sci; 2016 Jul; 90():85-95. PubMed ID: 26657202
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Development of Coprocessed Chitin-Calcium Carbonate as Multifunctional Tablet Excipient for Direct Compression, Part 2: Tableting Properties.
    Chaheen M; Bataille B; Yassine A; Belamie E; Sharkawi T
    J Pharm Sci; 2019 Oct; 108(10):3319-3328. PubMed ID: 31145923
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A multivariate formulation and process development platform for direct compression.
    Dhondt J; Bertels J; Kumar A; Van Hauwermeiren D; Ryckaert A; Van Snick B; Klingeleers D; Vervaet C; De Beer T
    Int J Pharm; 2022 Jul; 623():121962. PubMed ID: 35764260
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Application of multivariate methods to compression behavior evaluation of directly compressible materials.
    Haware RV; Tho I; Bauer-Brandl A
    Eur J Pharm Biopharm; 2009 May; 72(1):148-55. PubMed ID: 19084596
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Understanding die fill variation during mini-tablet production.
    Goh HP; Heng PWS; Liew CV
    Int J Pharm; 2017 Dec; 534(1-2):279-286. PubMed ID: 29074390
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tablet capping predictions of model materials using multivariate approach.
    Basim P; Haware RV; Dave RH
    Int J Pharm; 2019 Oct; 569():118548. PubMed ID: 31374240
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Real-time monitoring of pharmaceutical properties of medical tablets during direct tableting process by hybrid tableting process parameter-time profiles.
    Saito S; Hattori Y; Sakamoto T; Otsuka M
    Biomed Mater Eng; 2020; 30(5-6):509-524. PubMed ID: 31771033
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The Effects of Feed Frame Parameters and Turret Speed on Mini-Tablet Compression.
    Goh HP; Sia Heng PW; Liew CV
    J Pharm Sci; 2019 Mar; 108(3):1161-1171. PubMed ID: 30237030
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of friction between powder and tooling on the die-wall pressure evolution during tableting: Experimental and numerical results for flat and concave punches.
    Mazel V; Diarra H; Tchoreloff P
    Int J Pharm; 2019 Jan; 554():116-124. PubMed ID: 30395955
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prediction of tablet hardness based on near infrared spectra of raw mixed powders by chemometrics.
    Otsuka M; Yamane I
    J Pharm Sci; 2006 Jul; 95(7):1425-33. PubMed ID: 16721793
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Creation of novel large dataset comprising several granulation methods and the prediction of tablet properties from critical material attributes and critical process parameters using regularized linear regression models including interaction terms.
    Oishi T; Hayashi Y; Noguchi M; Yano F; Kumada S; Takayama K; Okada K; Onuki Y
    Int J Pharm; 2020 Mar; 577():119083. PubMed ID: 31988032
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of moisture and pressure on tablet compaction studied with FTIR spectroscopic imaging.
    Elkhider N; Chan KL; Kazarian SG
    J Pharm Sci; 2007 Feb; 96(2):351-60. PubMed ID: 17080419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.