These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 36594278)
1. First principles study of layered scandium disulfide for use as Li-ion and beyond-Li-ion batteries. Price CJ; Pitfield J; Baker EAD; Hepplestone SP Phys Chem Chem Phys; 2023 Jan; 25(3):2167-2178. PubMed ID: 36594278 [TBL] [Abstract][Full Text] [Related]
2. A glance of the layered transition metal oxide cathodes in sodium and lithium-ion batteries: difference and similarities. Xiao B; Omenya F; Reed D; Li X Nanotechnology; 2021 Jul; 32(42):. PubMed ID: 34243170 [TBL] [Abstract][Full Text] [Related]
3. High-Capacity Layered-Spinel Cathodes for Li-Ion Batteries. Nayak PK; Levi E; Grinblat J; Levi M; Markovsky B; Munichandraiah N; Sun YK; Aurbach D ChemSusChem; 2016 Sep; 9(17):2404-13. PubMed ID: 27530465 [TBL] [Abstract][Full Text] [Related]
4. Advances of LiCoO Ma H; Wang F; Shen M; Tong Y; Wang H; Hu H Small Methods; 2024 Jun; 8(6):e2300820. PubMed ID: 38150645 [TBL] [Abstract][Full Text] [Related]
5. High-Nickel NMA: A Cobalt-Free Alternative to NMC and NCA Cathodes for Lithium-Ion Batteries. Li W; Lee S; Manthiram A Adv Mater; 2020 Aug; 32(33):e2002718. PubMed ID: 32627875 [TBL] [Abstract][Full Text] [Related]
6. First-Principles Study of Lithium Borocarbide as a Cathode Material for Rechargeable Li ion Batteries. Xu Q; Ban C; Dillon AC; Wei SH; Zhao Y J Phys Chem Lett; 2011 May; 2(10):1129-32. PubMed ID: 26295314 [TBL] [Abstract][Full Text] [Related]
7. Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. Liu H; Bugnet M; Tessaro MZ; Harris KJ; Dunham MJ; Jiang M; Goward GR; Botton GA Phys Chem Chem Phys; 2016 Oct; 18(42):29064-29075. PubMed ID: 27711529 [TBL] [Abstract][Full Text] [Related]
8. Computational Study of the Enhancement of Graphene Electrodes for Use in Li-Ion Batteries via Forming Superlattices with Transition Metal Dichalcogenides. Baker EAD; Price CJ; Hepplestone SP J Phys Chem C Nanomater Interfaces; 2024 Jan; 128(2):723-731. PubMed ID: 38264433 [TBL] [Abstract][Full Text] [Related]
9. Challenges and prospects of lithium-sulfur batteries. Manthiram A; Fu Y; Su YS Acc Chem Res; 2013 May; 46(5):1125-34. PubMed ID: 23095063 [TBL] [Abstract][Full Text] [Related]
10. Cation/Anion Codoped and Cobalt-Free Li-Rich Layered Cathode for High-Performance Li-Ion Batteries. Nie L; Wang Z; Zhao X; Chen S; He Y; Zhao H; Gao T; Zhang Y; Dong L; Kim F; Yu Y; Liu W Nano Lett; 2021 Oct; 21(19):8370-8377. PubMed ID: 34543029 [TBL] [Abstract][Full Text] [Related]
11. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Zheng J; Ye Y; Liu T; Xiao Y; Wang C; Wang F; Pan F Acc Chem Res; 2019 Aug; 52(8):2201-2209. PubMed ID: 31180201 [TBL] [Abstract][Full Text] [Related]
12. Layered tetragonal zinc chalcogenides for energy-related applications: from photocatalysts for water splitting to cathode materials for Li-ion batteries. Zhou J; Zhuang HL; Wang H Nanoscale; 2017 Nov; 9(44):17303-17311. PubMed ID: 29090699 [TBL] [Abstract][Full Text] [Related]
13. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Liu W; Oh P; Liu X; Lee MJ; Cho W; Chae S; Kim Y; Cho J Angew Chem Int Ed Engl; 2015 Apr; 54(15):4440-57. PubMed ID: 25801735 [TBL] [Abstract][Full Text] [Related]
14. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
15. Feasibility of Cathode Surface Coating Technology for High-Energy Lithium-ion and Beyond-Lithium-ion Batteries. Kalluri S; Yoon M; Jo M; Liu HK; Dou SX; Cho J; Guo Z Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28251710 [TBL] [Abstract][Full Text] [Related]
16. Heavy Fluorination via Ion Exchange Achieves High-Performance Li-Mn-O-F Layered Cathode for Li-Ion Batteries. Lu J; Cao B; Hu B; Liao Y; Qi R; Liu J; Zuo C; Xu S; Li Z; Chen C; Zhang M; Pan F Small; 2022 Feb; 18(6):e2103499. PubMed ID: 34850552 [TBL] [Abstract][Full Text] [Related]
17. Enhanced Electrochemical Performance of the Lithium-Manganese-Rich Cathode for Li-Ion Batteries with Na and F CoDoping. Vanaphuti P; Chen J; Cao J; Bigham K; Chen B; Yang L; Chen H; Wang Y ACS Appl Mater Interfaces; 2019 Oct; 11(41):37842-37849. PubMed ID: 31560196 [TBL] [Abstract][Full Text] [Related]
18. Li-Rich Layered Sulfide as Cathode Active Materials in All-Solid-State Li-Metal Batteries. Marchini F; Saha S; Alves Dalla Corte D; Tarascon JM ACS Appl Mater Interfaces; 2020 Apr; 12(13):15145-15154. PubMed ID: 32167273 [TBL] [Abstract][Full Text] [Related]
19. Suppressing Voltage Decay of a Lithium-Rich Cathode Material by Surface Enrichment with Atomic Ruthenium. Shang H; Ning F; Li B; Zuo Y; Lu S; Xia D ACS Appl Mater Interfaces; 2018 Jun; 10(25):21349-21355. PubMed ID: 29862806 [TBL] [Abstract][Full Text] [Related]
20. Reaction Mechanisms of Layered Lithium-Rich Cathode Materials for High-Energy Lithium-Ion Batteries. Zhao S; Yan K; Zhang J; Sun B; Wang G Angew Chem Int Ed Engl; 2021 Feb; 60(5):2208-2220. PubMed ID: 32067325 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]