These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 36594671)
1. Atomistic Insights into the Inhibitory Mechanism of Tyrosine Phosphorylation against the Aggregation of Human Tau Fragment PHF6. Zou Y; Guan L; Tan J; Qi B; Wang Y; Zhang Q; Sun Y J Phys Chem B; 2023 Jan; 127(1):335-345. PubMed ID: 36594671 [TBL] [Abstract][Full Text] [Related]
2. Deciphering the Inhibitory Mechanism of Naphthoquinone-Dopamine on the Aggregation of Tau Core Fragments PHF6* and PHF6. Zou Y; Qi B; Tan J; Guan L; Zhang Q; Sun Y; Huang F ACS Chem Neurosci; 2023 Sep; 14(17):3265-3277. PubMed ID: 37585669 [TBL] [Abstract][Full Text] [Related]
3. Disclosing the Mechanism of Spontaneous Aggregation and Template-Induced Misfolding of the Key Hexapeptide (PHF6) of Tau Protein Based on Molecular Dynamics Simulation. Liu H; Zhong H; Liu X; Zhou S; Tan S; Liu H; Yao X ACS Chem Neurosci; 2019 Dec; 10(12):4810-4823. PubMed ID: 31661961 [TBL] [Abstract][Full Text] [Related]
4. Deciphering the Role of ATP on PHF6 Aggregation. Pal S; Roy R; Paul S J Phys Chem B; 2022 Jul; 126(26):4761-4775. PubMed ID: 35759245 [TBL] [Abstract][Full Text] [Related]
5. Structural insights into the co-aggregation of Aβ and tau amyloid core peptides: Revealing potential pathological heterooligomers by simulations. Li X; Chen Y; Yang Z; Zhang S; Wei G; Zhang L Int J Biol Macromol; 2024 Jan; 254(Pt 2):127841. PubMed ID: 37924907 [TBL] [Abstract][Full Text] [Related]
6. Molecular Insights into the Differential Effects of Acetylation on the Aggregation of Tau Microtubule-Binding Repeats. Zou Y; Guan L; Tan J; Qi B; Sun Y; Huang F; Zhang Q J Chem Inf Model; 2024 Apr; 64(8):3386-3399. PubMed ID: 38489841 [TBL] [Abstract][Full Text] [Related]
7. Molecular dynamics simulations reveal the disruption mechanism of a 2,4-thiazolidinedione derivative C30 against tau hexapeptide (PHF6) oligomer. Liu H; Zhong H; Liu H; Yao X Proteins; 2022 Jan; 90(1):142-154. PubMed ID: 34331342 [TBL] [Abstract][Full Text] [Related]
8. Unraveling the Influence of K280 Acetylation on the Conformational Features of Tau Core Fragment: A Molecular Dynamics Simulation Study. Zou Y; Guan L Front Mol Biosci; 2021; 8():801577. PubMed ID: 34966788 [TBL] [Abstract][Full Text] [Related]
9. On the Tracks of the Aggregation Mechanism of the PHF6 Peptide from Tau Protein: Molecular Dynamics, Energy, and Interaction Network Investigations. Fagnen C; Giovannini J; Catto M; Voisin-Chiret AS; Sopkova-de Oliveira Santos J ACS Chem Neurosci; 2022 Oct; 13(19):2874-2887. PubMed ID: 36153969 [TBL] [Abstract][Full Text] [Related]
10. Identification of Aggregation Mechanism of Acetylated PHF6* and PHF6 Tau Peptides Based on Molecular Dynamics Simulations and Markov State Modeling. Shah SJA; Zhang Q; Guo J; Liu H; Liu H; Villà-Freixa J ACS Chem Neurosci; 2023 Nov; 14(21):3959-3971. PubMed ID: 37830541 [TBL] [Abstract][Full Text] [Related]
11. Heparin remodels the microtubule-binding repeat R3 of Tau protein towards fibril-prone conformations. Dong X; Qi R; Qiao Q; Li X; Li F; Wan J; Zhang Q; Wei G Phys Chem Chem Phys; 2021 Sep; 23(36):20406-20418. PubMed ID: 34494046 [TBL] [Abstract][Full Text] [Related]
12. Purpurin modulates Tau-derived VQIVYK fibrillization and ameliorates Alzheimer's disease-like symptoms in animal model. Viswanathan GK; Shwartz D; Losev Y; Arad E; Shemesh C; Pichinuk E; Engel H; Raveh A; Jelinek R; Cooper I; Gosselet F; Gazit E; Segal D Cell Mol Life Sci; 2020 Jul; 77(14):2795-2813. PubMed ID: 31562564 [TBL] [Abstract][Full Text] [Related]
13. Tau assembly: the dominant role of PHF6 (VQIVYK) in microtubule binding region repeat R3. Ganguly P; Do TD; Larini L; LaPointe NE; Sercel AJ; Shade MF; Feinstein SC; Bowers MT; Shea JE J Phys Chem B; 2015 Apr; 119(13):4582-93. PubMed ID: 25775228 [TBL] [Abstract][Full Text] [Related]
14. Effects of All-Atom Molecular Mechanics Force Fields on Amyloid Peptide Assembly: The Case of PHF6 Peptide of Tau Protein. Man VH; He X; Gao J; Wang J J Chem Theory Comput; 2021 Oct; 17(10):6458-6471. PubMed ID: 34491058 [TBL] [Abstract][Full Text] [Related]
15. Computational Insights Into the Inhibition Mechanism of Proanthocyanidin B2 on Tau Hexapeptide (PHF6) Oligomer. Li Q; Xiong C; Liu H; Ge H; Yao X; Liu H Front Chem; 2021; 9():666043. PubMed ID: 34336783 [TBL] [Abstract][Full Text] [Related]
16. Dose-dependent binding behavior of anthraquinone derivative purpurin interacting with tau-derived peptide protofibril. Wu X; Zhu L; Wang G; Zhang Q; Qian Z Phys Chem Chem Phys; 2023 Oct; 25(39):26787-26796. PubMed ID: 37781899 [TBL] [Abstract][Full Text] [Related]
17. Comparison of the force fields on monomeric and fibrillar PHF6 of tau protein. Li Y; Peng X Biophys Chem; 2021 Oct; 277():106631. PubMed ID: 34116358 [TBL] [Abstract][Full Text] [Related]
19. Terminal Capping of an Amyloidogenic Tau Fragment Modulates Its Fibrillation Propensity. Arya S; Ganguly P; Arsiccio A; Claud SL; Trapp B; Schonfeld GE; Liu X; Lazar Cantrell K; Shea JE; Bowers MT J Phys Chem B; 2020 Oct; 124(40):8772-8783. PubMed ID: 32816481 [TBL] [Abstract][Full Text] [Related]
20. Integrating in vitro and in silico approaches to evaluate the "dual functionality" of palmatine chloride in inhibiting and disassembling Tau-derived VQIVYK peptide fibrils. Haj E; Losev Y; Guru KrishnaKumar V; Pichinuk E; Engel H; Raveh A; Gazit E; Segal D Biochim Biophys Acta Gen Subj; 2018 Jul; 1862(7):1565-1575. PubMed ID: 29634991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]