These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36594759)

  • 1. Venous chambers in clinical use for hemodialysis have limited capacity to eliminate microbubbles from entering the return bloodline: An in vitro study.
    Jonsson P; Stegmayr C; Stegmayr B; Forsberg U
    Artif Organs; 2023 Jun; 47(6):961-970. PubMed ID: 36594759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high blood level in the venous chamber and a wet-stored dialyzer help to reduce exposure for microemboli during hemodialysis.
    Forsberg U; Jonsson P; Stegmayr C; Jonsson F; Nilsson B; Nilsson Ekdahl K; Stegmayr B
    Hemodial Int; 2013 Oct; 17(4):612-7. PubMed ID: 23627921
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of Blood Foam in the Air Trap During Hemodialysis Due to Insufficient Automatic Priming of Dialyzers.
    Jonsson P; Lindmark L; Axelsson J; Karlsson L; Lundberg L; Stegmayr B
    Artif Organs; 2018 May; 42(5):533-539. PubMed ID: 29542180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodialysis dialyzers contribute to contamination of air microemboli that bypass the alarm system in the air trap.
    Stegmayr C; Jonsson P; Forsberg U; Stegmayr B
    Int J Artif Organs; 2008 Apr; 31(4):317-22. PubMed ID: 18432587
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathophysiology and clinical implications of microbubbles during hemodialysis.
    Barak M; Nakhoul F; Katz Y
    Semin Dial; 2008; 21(3):232-8. PubMed ID: 18363602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavior of gaseous microemboli in extracorporeal circuits: air versus CO2.
    Martens S; Dietrich M; Doss M; Deschka M; Keller H; Moritz A
    Int J Artif Organs; 2006 Jun; 29(6):578-82. PubMed ID: 16841286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sources of Mortality on Dialysis with an Emphasis on Microemboli.
    Stegmayr BG
    Semin Dial; 2016 Nov; 29(6):442-446. PubMed ID: 27528100
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of conventional extracorporeal circulation and minimal extracorporeal circulation with respect to microbubbles and microembolic signals.
    Perthel M; Kseibi S; Sagebiel F; Alken A; Laas J
    Perfusion; 2005 Oct; 20(6):329-33. PubMed ID: 16363318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of air micro bubbles in the venous outlet line: an in vitro analysis of various air traps used for hemodialysis.
    Stegmayr CJ; Jonsson P; Forsberg U; Stegmayr BG
    Artif Organs; 2007 Jun; 31(6):483-8. PubMed ID: 17537063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Air bubbles pass the security system of the dialysis device without alarming.
    Jonsson P; Karlsson L; Forsberg U; Gref M; Stegmayr C; Stegmayr B
    Artif Organs; 2007 Feb; 31(2):132-9. PubMed ID: 17298402
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acoustical bubble trapper applied to hemodialysis.
    Palanchon P; Birmelé B; Tranquart F
    Ultrasound Med Biol; 2008 Apr; 34(4):681-4. PubMed ID: 17996355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural network-based modeling of the number of microbubbles generated with four circulation factors in cardiopulmonary bypass.
    Miyamoto S; Soh Z; Okahara S; Furui A; Takasaki T; Katayama K; Takahashi S; Tsuji T
    Sci Rep; 2021 Jan; 11(1):549. PubMed ID: 33436919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elimination of microbubbles from the extracorporeal circuit: dynamic bubble trap versus arterial filter.
    Martens S; Dietrich M; Pietrzyk R; Graubitz K; Keller H; Moritz A
    Int J Artif Organs; 2004 Jan; 27(1):55-9. PubMed ID: 14984184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential impact of oxygenators with venous air trap on air embolism in veno-arterial Extracorporeal Life Support.
    Born F; Khaladj N; Pichlmaier M; Schramm R; Hagl C; Guenther SP
    Technol Health Care; 2017; 25(1):111-121. PubMed ID: 27497463
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulsatile flow decreases gaseous micro-bubble filtering properties of oxygenators without integrated arterial filters during cardiopulmonary bypass.
    Milano AD; Dodonov M; Onorati F; Menon T; Gottin L; Malerba G; Mazzucco A; Faggian G
    Interact Cardiovasc Thorac Surg; 2013 Nov; 17(5):811-7. PubMed ID: 23842758
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-vitro quantification of gaseous microemboli in two extracorporeal life support circuits.
    Burnside J; Gomez D; Preston TJ; Olshove VF; Phillips A
    J Extra Corpor Technol; 2011 Sep; 43(3):123-9. PubMed ID: 22164450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hemodialysis machine air detectors need not detect microbubbles.
    Polaschegg HD
    Artif Organs; 2007 Dec; 31(12):911-2; author reply 913-4. PubMed ID: 18039272
    [No Abstract]   [Full Text] [Related]  

  • 18. Comparison of bubble removal performances of five membrane oxygenators with and without a pre-filter.
    Ishida M; Takahashi S; Okamura H
    Perfusion; 2023 Apr; 38(3):530-538. PubMed ID: 35105222
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microbubbles of air may occur in the organs of hemodialysis patients.
    Stegmayr B; Brännström T; Forsberg U; Jonson P; Stegmayr C; Hultdin J
    ASAIO J; 2012; 58(2):177-9. PubMed ID: 22236622
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air contamination during hemodialysis should be minimized.
    Stegmayr B
    Hemodial Int; 2017 Apr; 21(2):168-172. PubMed ID: 27576675
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.