These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36594870)

  • 1. Exploring the Effects of Crystal Facet Orientation at the Heterojunction Interface on Charge Separation for Photoanodes.
    Liu C; Zuo J; Zhang J; Pei Y; Chen S
    ACS Appl Mater Interfaces; 2023 Jan; 15(2):3566-3573. PubMed ID: 36594870
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Activating a TiO
    Liu C; Chen L; Su X; Chen S; Zhang J; Yang H; Pei Y
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):2316-2325. PubMed ID: 34965083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase transformation synthesis of TiO
    Liu C; Yang Y; Li J; Chen S
    Nanotechnology; 2018 Jun; 29(26):265401. PubMed ID: 29638218
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The construction of lattice-matched CdS-Ag
    Yuan Z; Cao Y; Meng Y; Pan G; Zheng Y; Ni Z; Xia S
    J Hazard Mater; 2023 Sep; 458():131895. PubMed ID: 37356175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polaron States as a Massive Electron-Transfer Pathway at Heterojunction Interface.
    Zhu H; Yang Q; Liu D; Liu D; Zhang W; Chu Z; Wang X; Yan S; Li Z; Zou Z
    J Phys Chem Lett; 2020 Nov; 11(21):9184-9194. PubMed ID: 33058679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of efficient CdS-TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes.
    Kalanur SS; Hwang YJ; Joo OS
    J Colloid Interface Sci; 2013 Jul; 402():94-9. PubMed ID: 23647694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An effective strategy for promoting charge separation by integrating heterojunctions and multiple homojunctions in TiO
    Si H; Zou L; Huang G; Liao J; Lin S
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):888-900. PubMed ID: 36306600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. n-Fe₂O₃ to N⁺-TiO₂Heterojunction Photoanode for Photoelectrochemical Water Oxidation.
    Yang JS; Lin WH; Lin CY; Wang BS; Wu JJ
    ACS Appl Mater Interfaces; 2015 Jun; 7(24):13314-21. PubMed ID: 26027640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conjugated π Electrons of MOFs Drive Charge Separation at Heterostructures Interface for Enhanced Photoelectrochemical Water Oxidation.
    Wang X; Sun W; Tian Y; Dang K; Zhang Q; Shen Z; Zhan S
    Small; 2021 Apr; 17(14):e2100367. PubMed ID: 33690986
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ZnSe and CdS Co-Sensitized TiO
    Gunasekaran A; Sadhasivam S; Anbarasan N; Jeganathan K
    Chempluschem; 2022 Nov; 87(11):e202200304. PubMed ID: 36414394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of S-scheme CdS-g-C
    Liu J; Wei X; Sun W; Guan X; Zheng X; Li J
    Environ Res; 2021 Jun; 197():111136. PubMed ID: 33839114
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultrafast interfacial charge evolution of the Type-II cadmium Sulfide/Molybdenum disulfide heterostructure for photocatalytic hydrogen production.
    Liu H; Tan P; Liu Y; Zhai H; Du W; Liu X; Pan J
    J Colloid Interface Sci; 2022 Aug; 619():246-256. PubMed ID: 35395539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoetching TiO
    Liu C; Zuo J; Su X; Guo H; Pei Y; Zhang J; Chen S
    Nanoscale; 2022 Nov; 14(42):15918-15927. PubMed ID: 36268828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. TiO
    Wang L; Qiu J; Wu N; Yu X; An X
    J Colloid Interface Sci; 2023 Jan; 629(Pt A):206-214. PubMed ID: 36067599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistical Dual Strategies Based on in Situ-Converted Heterojunction and Reduction-Induced Surface Oxygen Vacancy for Enhanced Photoelectrochemical Performance of TiO
    He Y; Wang P; Zhu J; Yang Y; Liu Y; Chen M; Cao D; Yan X
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37322-37329. PubMed ID: 31525991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Situ Shape Change of Au Nanoparticles on TiO
    Fujishima M; Ikeda T; Akashi R; Tada H
    ACS Omega; 2018 Jun; 3(6):6104-6112. PubMed ID: 31458797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ternary Cu
    Jathar SB; Rondiya SR; Jadhav YA; Nilegave DS; Cross RW; Barma SV; Nasane MP; Gaware SA; Bade BR; Jadkar SR; Funde AM; Dzade NY
    Chem Mater; 2021 Mar; 33(6):1983-1993. PubMed ID: 33840893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal Facet Engineering of TiO
    Lee MG; Yang JW; Park H; Moon CW; Andoshe DM; Park J; Moon CK; Lee TH; Choi KS; Cheon WS; Kim JJ; Jang HW
    Nanomicro Lett; 2022 Jan; 14(1):48. PubMed ID: 35076762
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergistic role of hydrogen treatment and heterojunction in H-WO
    Mahadik MA; Hwang IS; Chae WS; Lee HH; Choi SH; Cho M; Jang JS
    Chemosphere; 2023 Mar; 318():137973. PubMed ID: 36709844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An in situ assembled WO
    Liu Y; Zeng X; Easton CD; Li Q; Xia Y; Yin Y; Hu X; Hu J; Xia D; McCarthy DT; Deletic A; Sun C; Yu J; Zhang X
    Nanoscale; 2020 Apr; 12(16):8775-8784. PubMed ID: 32270841
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.