BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 36595243)

  • 61. MR-based detection of individual histotripsy bubble clouds formed in tissues and phantoms.
    Allen SP; Hernandez-Garcia L; Cain CA; Hall TL
    Magn Reson Med; 2016 Nov; 76(5):1486-1493. PubMed ID: 26599823
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effects of frequency on bubble-cloud behavior and ablation efficiency in intrinsic threshold histotripsy.
    Edsall C; Ham E; Holmes H; Hall TL; Vlaisavljevich E
    Phys Med Biol; 2021 Nov; 66(22):. PubMed ID: 34706348
    [No Abstract]   [Full Text] [Related]  

  • 63. The effect of uniform heating on the biomechanical properties of the intervertebral disc in a porcine model.
    Wang JC; Kabo JM; Tsou PM; Halevi L; Shamie AN
    Spine J; 2005; 5(1):64-70. PubMed ID: 15653086
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Histotripsy: The Next Generation of High-Intensity Focused Ultrasound for Focal Prostate Cancer Therapy.
    Dubinsky TJ; Khokhlova TD; Khokhlova V; Schade GR
    J Ultrasound Med; 2020 Jun; 39(6):1057-1067. PubMed ID: 31830312
    [TBL] [Abstract][Full Text] [Related]  

  • 65. In vitro comminution of model renal calculi using histotripsy.
    Duryea AP; Maxwell AD; Roberts WW; Xu Z; Hall TL; Cain CA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2011 May; 58(5):971-80. PubMed ID: 21622053
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Focused Ultrasound Mechanical Disruption of Ex Vivo Rat Tendon.
    Smallcomb M; Elliott J; Khandare S; Butt AA; Vidt ME; Simon JC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Sep; 68(9):2981-2986. PubMed ID: 33891552
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Viscoelastic characterization of HIFU ablation with shear wave by using K-space analysis combined with model-fitting correction method.
    Wang X; Geng Y; Han D; Lu M; Li R; Li Y; Zhang Q; Wan M
    Ultrasonics; 2020 Dec; 108():106179. PubMed ID: 32504988
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Non-invasive, Rapid Ablation of Tissue Volume Using Histotripsy.
    Lundt JE; Allen SP; Shi J; Hall TL; Cain CA; Xu Z
    Ultrasound Med Biol; 2017 Dec; 43(12):2834-2847. PubMed ID: 28935135
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Three potential mechanisms for failure of high intensity focused ultrasound ablation in cardiac tissue.
    Laughner JI; Sulkin MS; Wu Z; Deng CX; Efimov IR
    Circ Arrhythm Electrophysiol; 2012 Apr; 5(2):409-16. PubMed ID: 22322367
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Influence of altered geometry and material properties on tissue stress distribution under load in tendinopathic Achilles tendons - A subject-specific finite element analysis.
    Shim VB; Hansen W; Newsham-West R; Nuri L; Obst S; Pizzolato C; Lloyd DG; Barrett RS
    J Biomech; 2019 Jan; 82():142-148. PubMed ID: 30424837
    [TBL] [Abstract][Full Text] [Related]  

  • 71. High intensity focused ultrasound (HIFU) focal spot localization using harmonic motion imaging (HMI).
    Han Y; Hou GY; Wang S; Konofagou E
    Phys Med Biol; 2015 Aug; 60(15):5911-24. PubMed ID: 26184846
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy.
    Hu H; Xu S; Yuan Y; Liu R; Wang S; Wan M
    J Acoust Soc Am; 2015 May; 137(5):2563-72. PubMed ID: 25994689
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Modeling of Microbubble-Enhanced High-Intensity Focused Ultrasound.
    Gnanaskandan A; Hsiao CT; Chahine G
    Ultrasound Med Biol; 2019 Jul; 45(7):1743-1761. PubMed ID: 30982546
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Time-dependent ultrasound echo changes occur in tendon during viscoelastic testing.
    Duenwald-Kuehl S; Kobayashi H; Lakes R; Vanderby R
    J Biomech Eng; 2012 Nov; 134(11):111006. PubMed ID: 23387788
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Research progress and clinical evaluation of histotripsy: a narrative review.
    Li S; Wei Y; Zhang B; Li X
    Ann Transl Med; 2023 Mar; 11(6):263. PubMed ID: 37082680
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Magnetic Resonance Acoustic Radiation Force Imaging (MR-ARFI) for the monitoring of High Intensity Focused Ultrasound (HIFU) ablation in anisotropic tissue.
    Choquet K; Vappou J; Cabras P; Ishak O; Gangi A; Breton E
    MAGMA; 2023 Oct; 36(5):737-747. PubMed ID: 36723689
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Magnetic resonance imaging for the exploitation of bubble-enhanced heating by high-intensity focused ultrasound: a feasibility study in ex vivo liver.
    Elbes D; Denost Q; Robert B; Köhler MO; Tanter M; Bruno Q
    Ultrasound Med Biol; 2014 May; 40(5):956-64. PubMed ID: 24462160
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Histotripsy Lesion Formation Using an Ultrasound Imaging Probe Enabled by a Low-Frequency Pump Transducer.
    Lin KW; Hall TL; Xu Z; Cain CA
    Ultrasound Med Biol; 2015 Aug; 41(8):2148-60. PubMed ID: 25929995
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Prevention of post-focal thermal damage by formation of bubbles at the focus during high intensity focused ultrasound therapy.
    Zderic V; Foley J; Luo W; Vaezy S
    Med Phys; 2008 Oct; 35(10):4292-9. PubMed ID: 18975674
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Non-Invasive Targeted Peripheral Nerve Ablation Using 3D MR Neurography and MRI-Guided High-Intensity Focused Ultrasound (MR-HIFU): Pilot Study in a Swine Model.
    Huisman M; Staruch RM; Ladouceur-Wodzak M; van den Bosch MA; Burns DK; Chhabra A; Chopra R
    PLoS One; 2015; 10(12):e0144742. PubMed ID: 26659073
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.