These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 36595326)
1. Small-scale effects on the radial vibration of an elastic nanosphere based on nonlocal strain gradient theory. Ducottet S; El Baroudi A Nanotechnology; 2023 Jan; 34(11):. PubMed ID: 36595326 [TBL] [Abstract][Full Text] [Related]
2. Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Ghavanloo E; Fazelzadeh SA Nanotechnology; 2013 Feb; 24(7):075702. PubMed ID: 23358570 [TBL] [Abstract][Full Text] [Related]
3. Nonlinear vibrations of pre- and post-buckled lipid supramolecular micro/nano-tubules via nonlocal strain gradient elasticity theory. Sahmani S; Aghdam MM J Biomech; 2017 Dec; 65():49-60. PubMed ID: 29050823 [TBL] [Abstract][Full Text] [Related]
4. Nonlocal strain gradient beam model for postbuckling and associated vibrational response of lipid supramolecular protein micro/nano-tubules. Sahmani S; Aghdam MM Math Biosci; 2018 Jan; 295():24-35. PubMed ID: 29104135 [TBL] [Abstract][Full Text] [Related]
8. Fluttering and divergence instability of functionally graded viscoelastic nanotubes conveying fluid based on nonlocal strain gradient theory. Nematollahi MS; Mohammadi H; Taghvaei S Chaos; 2019 Mar; 29(3):033108. PubMed ID: 30927831 [TBL] [Abstract][Full Text] [Related]
9. Nonlinear vibrations of axially moving simply supported viscoelastic nanobeams based on nonlocal strain gradient theory. Wang J; Shen H J Phys Condens Matter; 2019 Dec; 31(48):485403. PubMed ID: 31422947 [TBL] [Abstract][Full Text] [Related]
10. Application of nonlocal models to nano beams. Part I: Axial length scale effect. Kim JS J Nanosci Nanotechnol; 2014 Oct; 14(10):7592-6. PubMed ID: 25942831 [TBL] [Abstract][Full Text] [Related]
11. Critical Temperatures for Vibrations and Buckling of Magneto-Electro-Elastic Nonlocal Strain Gradient Plates. Tocci Monaco G; Fantuzzi N; Fabbrocino F; Luciano R Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33401556 [TBL] [Abstract][Full Text] [Related]
12. Nonlocal Strain Gradient Model for the Nonlinear Static Analysis of a Circular/Annular Nanoplate. Sadeghian M; Palevicius A; Janusas G Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241675 [TBL] [Abstract][Full Text] [Related]
13. Vibration Characteristics of Magnetostrictive Composite Cantilever Resonator with Nonlocal Effect. Xu Y; Shang X; Xu K Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205084 [TBL] [Abstract][Full Text] [Related]
14. Study on the radial vibration and acoustic field of an isotropic circular ring radiator. Lin S; Xu L Ultrasonics; 2012 Jan; 52(1):103-10. PubMed ID: 21802702 [TBL] [Abstract][Full Text] [Related]
15. Nonlocal Strain Gradient Theory for the Bending of Functionally Graded Porous Nanoplates. Alghanmi RA Materials (Basel); 2022 Dec; 15(23):. PubMed ID: 36500099 [TBL] [Abstract][Full Text] [Related]
16. Nonlocal Vibration Analysis of a Nonuniform Carbon Nanotube with Elastic Constraints and an Attached Mass. De Rosa MA; Lippiello M; Babilio E; Ceraldi C Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34206196 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulation of vibrational behavior of annular graphene sheet: Identification of nonlocal parameter. Madani SH; Sabour MH; Fadaee M J Mol Graph Model; 2018 Jan; 79():264-272. PubMed ID: 29288937 [TBL] [Abstract][Full Text] [Related]
18. Size-dependent axial instability of microtubules surrounded by cytoplasm of a living cell based on nonlocal strain gradient elasticity theory. Sahmani S; Aghdam MM J Theor Biol; 2017 Jun; 422():59-71. PubMed ID: 28427819 [TBL] [Abstract][Full Text] [Related]
19. Application of nonlocal models to nano beams. Part II: Thickness length scale effect. Kim JS J Nanosci Nanotechnol; 2014 Oct; 14(10):7597-602. PubMed ID: 25942832 [TBL] [Abstract][Full Text] [Related]
20. Application of the Higher-Order Hamilton Approach to the Nonlinear Free Vibrations Analysis of Porous FG Nano-Beams in a Hygrothermal Environment Based on a Local/Nonlocal Stress Gradient Model of Elasticity. Penna R; Feo L; Lovisi G; Fabbrocino F Nanomaterials (Basel); 2022 Jun; 12(12):. PubMed ID: 35745434 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]