BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36595330)

  • 21. Super-Resolution Ultrasound Localization Microscopy Through Deep Learning.
    van Sloun RJG; Solomon O; Bruce M; Khaing ZZ; Wijkstra H; Eldar YC; Mischi M
    IEEE Trans Med Imaging; 2021 Mar; 40(3):829-839. PubMed ID: 33180723
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transcranial 3D ultrasound localization microscopy using a large element matrix array with a multi-lens diffracting layer: an
    Favre H; Pernot M; Tanter M; Papadacci C
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36808924
    [No Abstract]   [Full Text] [Related]  

  • 23. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging.
    Errico C; Pierre J; Pezet S; Desailly Y; Lenkei Z; Couture O; Tanter M
    Nature; 2015 Nov; 527(7579):499-502. PubMed ID: 26607546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Context-aware deep learning enables high-efficacy localization of high concentration microbubbles for super-resolution ultrasound localization microscopy.
    Shin Y; Lowerison MR; Wang Y; Chen X; You Q; Dong Z; Anastasio MA; Song P
    Nat Commun; 2024 Apr; 15(1):2932. PubMed ID: 38575577
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 3D Acoustic Wave Sparsely Activated Localization Microscopy With Phase Change Contrast Agents.
    Riemer K; Tan Q; Morse S; Bau L; Toulemonde M; Yan J; Zhu J; Wang B; Taylor L; Lerendegui M; Wu Q; Stride E; Dunsby C; Weinberg PD; Tang MX
    Invest Radiol; 2024 May; 59(5):379-390. PubMed ID: 37843819
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ultrasound Matrix Imaging-Part II: The Distortion Matrix for Aberration Correction Over Multiple Isoplanatic Patches.
    Lambert W; Cobus LA; Robin J; Fink M; Aubry A
    IEEE Trans Med Imaging; 2022 Dec; 41(12):3921-3938. PubMed ID: 35976837
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Toward optimization of in vivo super-resolution ultrasound imaging using size-selected microbubble contrast agents.
    Ghosh D; Xiong F; Sirsi SR; Shaul PW; Mattrey RF; Hoyt K
    Med Phys; 2017 Dec; 44(12):6304-6313. PubMed ID: 28975635
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasound Microvascular Imaging Based on Super-Resolution Radial Fluctuations.
    Zhang J; Li N; Dong F; Liang S; Wang D; An J; Long Y; Wang Y; Luo Y; Zhang J
    J Ultrasound Med; 2020 Aug; 39(8):1507-1516. PubMed ID: 32064662
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultrasound contrast agents for brain perfusion imaging and ischemic stroke therapy.
    Della Martina A; Meyer-Wiethe K; Allémann E; Seidel G
    J Neuroimaging; 2005 Jul; 15(3):217-32. PubMed ID: 15951404
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcranial ultrasound imaging with speed of sound-based phase correction: a numerical study.
    Wang T; Jing Y
    Phys Med Biol; 2013 Oct; 58(19):6663-81. PubMed ID: 24018632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.
    Kaye EA; Hertzberg Y; Marx M; Werner B; Navon G; Levoy M; Pauly KB
    Med Phys; 2012 Oct; 39(10):6254-63. PubMed ID: 23039661
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Short Acquisition Time Super-Resolution Ultrasound Microvessel Imaging via Microbubble Separation.
    Huang C; Lowerison MR; Trzasko JD; Manduca A; Bresler Y; Tang S; Gong P; Lok UW; Song P; Chen S
    Sci Rep; 2020 Apr; 10(1):6007. PubMed ID: 32265457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ray theory-based compounded plane wave ultrasound imaging for aberration corrected transcranial imaging: Phantom experiments and simulations.
    Jiang C; Li B; Xie L; Liu C; Xu K; Zhan Y; Ta D
    Ultrasonics; 2023 Dec; 135():107124. PubMed ID: 37541030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Heterogeneous Angular Spectrum Method for Trans-Skull Imaging and Focusing.
    Schoen S; Arvanitis CD
    IEEE Trans Med Imaging; 2020 May; 39(5):1605-1614. PubMed ID: 31751231
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative tissue perfusion imaging using nonlinear ultrasound localization microscopy.
    Harmon JN; Khaing ZZ; Hyde JE; Hofstetter CP; Tremblay-Darveau C; Bruce MF
    Sci Rep; 2022 Dec; 12(1):21943. PubMed ID: 36536012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ultrasound localization microscopy.
    Dencks S; Schmitz G
    Z Med Phys; 2023 Aug; 33(3):292-308. PubMed ID: 37328329
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transcranial activation and imaging of low boiling point phase-change contrast agents through the temporal bone using an ultrafast interframe activation ultrasound sequence.
    Jing B; Kashyap EP; Lindsey BD
    Med Phys; 2020 Sep; 47(9):4450-4464. PubMed ID: 32657429
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Super-resolution ultrasound imaging : Methods and applications].
    Porte C; Kiessling F
    Radiologie (Heidelb); 2022 Jun; 62(6):467-474. PubMed ID: 35380263
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Deep learning for fast super-resolution ultrasound microvessel imaging.
    Luan S; Yu X; Lei S; Ma C; Wang X; Xue X; Ding Y; Ma T; Zhu B
    Phys Med Biol; 2023 Dec; 68(24):. PubMed ID: 37934040
    [No Abstract]   [Full Text] [Related]  

  • 40. Refraction-Corrected Transcranial Ultrasound Imaging Through the Human Temporal Window Using a Single Probe.
    Mozaffarzadeh M; Verschuur E; Verweij MD; Daeichin V; De Jong N; Renaud G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Apr; 69(4):1191-1203. PubMed ID: 35100111
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.