BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 36595330)

  • 41. Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent.
    Lin F; Tsuruta JK; Rojas JD; Dayton PA
    Ultrasound Med Biol; 2017 Oct; 43(10):2488-2493. PubMed ID: 28668636
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Backscattering amplitude in ultrasound localization microscopy.
    Renaudin N; Pezet S; Ialy-Radio N; Demene C; Tanter M
    Sci Rep; 2023 Jul; 13(1):11477. PubMed ID: 37455266
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Narrow size distribution of microbubbles for enhancement of harmonic imaging.
    Moon H; Yu J; Park S; Chang JH; Song TK; Kim H
    J Biomed Nanotechnol; 2013 May; 9(5):845-8. PubMed ID: 23802414
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved Transcranial Plane-Wave Imaging With Learned Speed-of-Sound Maps.
    Yang Y; Duan H; Zheng Y
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2191-2201. PubMed ID: 38271172
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Very Low Frequency Radial Modulation for Deep Penetration Contrast-Enhanced Ultrasound Imaging.
    Jing B; Lindsey BD
    Ultrasound Med Biol; 2022 Mar; 48(3):530-545. PubMed ID: 34972572
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Improved Super-Resolution Ultrasound Microvessel Imaging With Spatiotemporal Nonlocal Means Filtering and Bipartite Graph-Based Microbubble Tracking.
    Song P; Trzasko JD; Manduca A; Huang R; Kadirvel R; Kallmes DF; Chen S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Feb; 65(2):149-167. PubMed ID: 29389649
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An Ultrasonic-Adaptive Beamforming Method and Its Application for Trans-skull Imaging of Certain Types of Head Injuries; Part I: Transmission Mode.
    Shapoori K; Sadler J; Wydra A; Malyarenko EV; Sinclair AN; Maev RG
    IEEE Trans Biomed Eng; 2015 May; 62(5):1253-64. PubMed ID: 25423646
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Super-Resolved Microbubble Localization in Single-Channel Ultrasound RF Signals Using Deep Learning.
    Blanken N; Wolterink JM; Delingette H; Brune C; Versluis M; Lajoinie G
    IEEE Trans Med Imaging; 2022 Sep; 41(9):2532-2542. PubMed ID: 35404813
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A super-resolution ultrasound method for brain vascular mapping.
    O'Reilly MA; Hynynen K
    Med Phys; 2013 Nov; 40(11):110701. PubMed ID: 24320408
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stimulated acoustic emission detected by transcranial color doppler ultrasound : a contrast-specific phenomenon useful for the detection of cerebral tissue perfusion.
    Pohl C; Tiemann K; Schlosser T; Becher H
    Stroke; 2000 Jul; 31(7):1661-6. PubMed ID: 10884470
    [TBL] [Abstract][Full Text] [Related]  

  • 51. An aberration correction approach for single and dual aperture ultrasound imaging of the abdomen.
    van Hal VHJ; Muller JW; van Sambeek MRHM; Lopata RGP; Schwab HM
    Ultrasonics; 2023 May; 131():106936. PubMed ID: 36774785
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Improved Ultrasound Localization Microscopy Based on Microbubble Uncoupling via Transmit Excitation.
    Kim J; Lowerison MR; Sekaran NVC; Kou Z; Dong Z; Oelze ML; Llano DA; Song P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Mar; 69(3):1041-1052. PubMed ID: 35041599
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparison of transcranial brain tissue perfusion images between ultraharmonic, second harmonic, and power harmonic imaging.
    Shiogai T; Takayasu N; Mizuno T; Nakagawa M; Furuhata H
    Stroke; 2004 Mar; 35(3):687-93. PubMed ID: 14963286
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.
    Jones RM; O'Reilly MA; Hynynen K
    Phys Med Biol; 2013 Jul; 58(14):4981-5005. PubMed ID: 23807573
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Adaptive focusing for transcranial ultrasound imaging using dual arrays.
    Vignon F; Aubry JF; Tanter M; Margoum A; Fink M
    J Acoust Soc Am; 2006 Nov; 120(5 Pt 1):2737-45. PubMed ID: 17139734
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ultrasound Localization Microscopy and Super-Resolution: A State of the Art.
    Couture O; Hingot V; Heiles B; Muleki-Seya P; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Aug; 65(8):1304-1320. PubMed ID: 29994673
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of Skull Porous Trabecular Structure on Transcranial Ultrasound Imaging in the Presence of Elastic Wave Mode Conversion at Varying Incidence Angle.
    Jing B; Lindsey BD
    Ultrasound Med Biol; 2021 Sep; 47(9):2734-2748. PubMed ID: 34140169
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Ultrasound contrast plane wave imaging.
    Couture O; Fink M; Tanter M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Dec; 59(12):2676-83. PubMed ID: 23221216
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase aberration correction for ultrasound imaging guided extracorporeal shock wave therapy (ESWT): Feasibility study.
    Kim H; Song I; Kang J; Yoo Y
    Ultrasonics; 2023 Jul; 132():107011. PubMed ID: 37071943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.