These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 36595526)

  • 1. Use of the reversible jump Markov chain Monte Carlo algorithm to select multiplicative terms in the AMMI-Bayesian model.
    Silva CPD; Mendes CTE; Silva AQD; Oliveira LA; Von Pinho RG; Balestre M
    PLoS One; 2023; 18(1):e0279537. PubMed ID: 36595526
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Bayesian Shrinkage Approach for AMMI Models.
    da Silva CP; de Oliveira LA; Nuvunga JJ; Pamplona AK; Balestre M
    PLoS One; 2015; 10(7):e0131414. PubMed ID: 26158452
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Jump MCMC for Deghosting in MSPSR Systems.
    Kulmon P
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversible jump Markov chain Monte Carlo for deconvolution.
    Kang D; Verotta D
    J Pharmacokinet Pharmacodyn; 2007 Jun; 34(3):263-87. PubMed ID: 17221310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved reversible jump algorithms for Bayesian species delimitation.
    Rannala B; Yang Z
    Genetics; 2013 May; 194(1):245-53. PubMed ID: 23502678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter inference for discretely observed stochastic kinetic models using stochastic gradient descent.
    Wang Y; Christley S; Mjolsness E; Xie X
    BMC Syst Biol; 2010 Jul; 4():99. PubMed ID: 20663171
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.
    Huelsenbeck JP; Larget B; Alfaro ME
    Mol Biol Evol; 2004 Jun; 21(6):1123-33. PubMed ID: 15034130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametric bootstrap methods for testing multiplicative terms in GGE and AMMI models.
    Forkman J; Piepho HP
    Biometrics; 2014 Sep; 70(3):639-47. PubMed ID: 24588726
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel Bayesian continuous piecewise linear log-hazard model, with estimation and inference via reversible jump Markov chain Monte Carlo.
    Chapple AG; Peak T; Hemal A
    Stat Med; 2020 May; 39(12):1766-1780. PubMed ID: 32086957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian inference for fitting cardiac models to experiments: estimating parameter distributions using Hamiltonian Monte Carlo and approximate Bayesian computation.
    Nieto Ramos A; Fenton FH; Cherry EM
    Med Biol Eng Comput; 2023 Jan; 61(1):75-95. PubMed ID: 36322242
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of under-reporting in epidemics using approximations.
    Gamado K; Streftaris G; Zachary S
    J Math Biol; 2017 Jun; 74(7):1683-1707. PubMed ID: 27785559
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A robust AMMI model for the analysis of genotype-by-environment data.
    Rodrigues PC; Monteiro A; Lourenço VM
    Bioinformatics; 2016 Jan; 32(1):58-66. PubMed ID: 26363027
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient Markov chain Monte Carlo implementation of Bayesian analysis of additive and dominance genetic variances in noninbred pedigrees.
    Waldmann P; Hallander J; Hoti F; Sillanpää MJ
    Genetics; 2008 Jun; 179(2):1101-12. PubMed ID: 18558655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian adaptive Markov chain Monte Carlo estimation of genetic parameters.
    Mathew B; Bauer AM; Koistinen P; Reetz TC; Léon J; Sillanpää MJ
    Heredity (Edinb); 2012 Oct; 109(4):235-45. PubMed ID: 22805656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonconjugate Bayesian analysis of variance component models.
    Wolfinger RD; Kass RE
    Biometrics; 2000 Sep; 56(3):768-74. PubMed ID: 10985214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct Estimation of Diagnostic Classification Model Attribute Mastery Profiles via a Collapsed Gibbs Sampling Algorithm.
    Yamaguchi K; Templin J
    Psychometrika; 2022 Dec; 87(4):1390-1421. PubMed ID: 35426059
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An efficient interpolation technique for jump proposals in reversible-jump Markov chain Monte Carlo calculations.
    Farr WM; Mandel I; Stevens D
    R Soc Open Sci; 2015 Jun; 2(6):150030. PubMed ID: 26543580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shrinkage in the Bayesian analysis of the GGE model: A case study with simulation.
    Oliveira LA; Silva CPD; Silva AQD; Mendes CTE; Nuvunga JJ; Muniz JA; Bueno Filho JSS; Balestre M
    PLoS One; 2021; 16(8):e0256882. PubMed ID: 34460844
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bayesian Multiple Emitter Fitting using Reversible Jump Markov Chain Monte Carlo.
    Fazel M; Wester MJ; Mazloom-Farsibaf H; Meddens MBM; Eklund AS; Schlichthaerle T; Schueder F; Jungmann R; Lidke KA
    Sci Rep; 2019 Sep; 9(1):13791. PubMed ID: 31551452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Random frog: an efficient reversible jump Markov Chain Monte Carlo-like approach for variable selection with applications to gene selection and disease classification.
    Li HD; Xu QS; Liang YZ
    Anal Chim Acta; 2012 Aug; 740():20-6. PubMed ID: 22840646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.