BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 36595705)

  • 21. Antifreeze effect of carboxylated ε-poly-L-lysine on the growth kinetics of ice crystals.
    Vorontsov DA; Sazaki G; Hyon SH; Matsumura K; Furukawa Y
    J Phys Chem B; 2014 Aug; 118(34):10240-9. PubMed ID: 25113284
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Anti freeze proteins (Afp): Properties, sources and applications - A review.
    Baskaran A; Kaari M; Venugopal G; Manikkam R; Joseph J; Bhaskar PV
    Int J Biol Macromol; 2021 Oct; 189():292-305. PubMed ID: 34419548
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ice recrystallization is strongly inhibited when antifreeze proteins bind to multiple ice planes.
    Rahman AT; Arai T; Yamauchi A; Miura A; Kondo H; Ohyama Y; Tsuda S
    Sci Rep; 2019 Feb; 9(1):2212. PubMed ID: 30760774
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermodynamic Analysis of Thermal Hysteresis: Mechanistic Insights into Biological Antifreezes.
    Wang S; Amornwittawat N; Wen X
    J Chem Thermodyn; 2012 Oct; 53():125-130. PubMed ID: 22822266
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Antifreeze proteins modify the freezing process in planta.
    Griffith M; Lumb C; Wiseman SB; Wisniewski M; Johnson RW; Marangoni AG
    Plant Physiol; 2005 May; 138(1):330-40. PubMed ID: 15805474
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ice crystal recrystallization inhibition of type I antifreeze protein, type III antifreeze protein, and antifreeze glycoprotein: effects of AF(G)Ps concentration and heat treatment.
    Ma Q; Shibata M; Hagiwara T
    Biosci Biotechnol Biochem; 2022 Apr; 86(5):635-645. PubMed ID: 35134820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Peptide backbone circularization enhances antifreeze protein thermostability.
    Stevens CA; Semrau J; Chiriac D; Litschko M; Campbell RL; Langelaan DN; Smith SP; Davies PL; Allingham JS
    Protein Sci; 2017 Oct; 26(10):1932-1941. PubMed ID: 28691252
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Do antifreeze proteins generally possess the potential to promote ice growth?
    Cui S; Zhang W; Shao X; Cai W
    Phys Chem Chem Phys; 2022 Mar; 24(13):7901-7908. PubMed ID: 35311839
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ice-surface adsorption enhanced colligative effect of antifreeze proteins in ice growth inhibition.
    Mao Y; Ba Y
    J Chem Phys; 2006 Sep; 125(9):091102. PubMed ID: 16965064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review.
    Obadi M; Xu B
    Int J Biol Macromol; 2024 Jan; 255():128202. PubMed ID: 37979748
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biological function of an insect antifreeze protein simulated by molecular dynamics.
    Kuiper MJ; Morton CJ; Abraham SE; Gray-Weale A
    Elife; 2015 May; 4():. PubMed ID: 25951514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ordered hydration layer mediated ice adsorption of a globular antifreeze protein: mechanistic insight.
    Chakraborty S; Jana B
    Phys Chem Chem Phys; 2019 Sep; 21(35):19298-19310. PubMed ID: 31451813
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dynamical mechanism of antifreeze proteins to prevent ice growth.
    Kutschan B; Morawetz K; Thoms S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022711. PubMed ID: 25215762
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Antifreeze proteins and homogeneous nucleation: On the physical determinants impeding ice crystal growth.
    Bianco V; Espinosa JR; Vega C
    J Chem Phys; 2020 Sep; 153(9):091102. PubMed ID: 32891082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Brassica juncea leaf cuticle contains xylose and mannose (xylomannan) which inhibit ice recrystallization on the leaf surface.
    Yadav K; Arya M; Prakash S; Jha BS; Manchanda P; Kumar A; Deswal R
    Planta; 2023 Jul; 258(2):44. PubMed ID: 37460860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides.
    Chen X; Wu J; Li X; Yang F; Yu L; Li X; Huang J; Wang S
    Food Chem; 2022 Mar; 371():131054. PubMed ID: 34555708
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Accumulation of Antifreeze Proteins on Ice Is Determined by Adsorption.
    Thosar AU; Shalom Y; Braslavsky I; Drori R; Patel AJ
    J Am Chem Soc; 2023 Aug; 145(32):17597-17602. PubMed ID: 37527507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intermediate activity of midge antifreeze protein is due to a tyrosine-rich ice-binding site and atypical ice plane affinity.
    Basu K; Wasserman SS; Jeronimo PS; Graham LA; Davies PL
    FEBS J; 2016 Apr; 283(8):1504-15. PubMed ID: 26896764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Annealing condition influences thermal hysteresis of fungal type ice-binding proteins.
    Xiao N; Hanada Y; Seki H; Kondo H; Tsuda S; Hoshino T
    Cryobiology; 2014 Feb; 68(1):159-61. PubMed ID: 24201106
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.