These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36595918)

  • 1. Characterization of multiple interactions between the envelope E protein of SARS-CoV-2 and human BRD4.
    Zandian M; Jang SM; Lachance C; Acharya A; Byrareddy SN; Côté J; Kutateladze TG
    STAR Protoc; 2022 Dec; 3(4):101853. PubMed ID: 36595918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Binding of the SARS-CoV-2 envelope E protein to human BRD4 is essential for infection.
    Vann KR; Acharya A; Jang SM; Lachance C; Zandian M; Holt TA; Smith AL; Pandey K; Durden DL; El-Gamal D; Côté J; Byrareddy SN; Kutateladze TG
    Structure; 2022 Sep; 30(9):1224-1232.e5. PubMed ID: 35716662
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SARS-CoV-2 envelope protein attain K
    Agrahari AK; Srivastava M; Singh M; Asthana S
    J Biomol Struct Dyn; 2023; 41(24):15305-15319. PubMed ID: 36907648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catching BETs by viruses.
    Zandian M; Chen IP; Byrareddy SN; Fujimori DG; Ott M; Kutateladze TG
    Biochim Biophys Acta Gene Regul Mech; 2022 Oct; 1865(7):194859. PubMed ID: 35985635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Viral E protein neutralizes BET protein-mediated post-entry antagonism of SARS-CoV-2.
    Chen IP; Longbotham JE; McMahon S; Suryawanshi RK; Khalid MM; Taha TY; Tabata T; Hayashi JM; Soveg FW; Carlson-Stevermer J; Gupta M; Zhang MY; Lam VL; Li Y; Yu Z; Titus EW; Diallo A; Oki J; Holden K; Krogan N; Fujimori DG; Ott M
    Cell Rep; 2022 Jul; 40(3):111088. PubMed ID: 35839775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FACT subunit SUPT16H associates with BRD4 and contributes to silencing of interferon signaling.
    Zhou D; Wu Z; Park JG; Fiches GN; Li TW; Ma Q; Huang H; Biswas A; Martinez-Sobrido L; Santoso NG; Zhu J
    Nucleic Acids Res; 2022 Aug; 50(15):8700-8718. PubMed ID: 35904816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An antibody-based proximity labeling protocol to identify biotinylated interactors of SARS-CoV-2.
    Shang L; Zhang Y; Liu Y; Jin C; Zhao Y; Zhang J; Wang PH; Wang J
    STAR Protoc; 2022 Jun; 3(2):101406. PubMed ID: 35611119
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for characterizing the inhibition of SARS-CoV-2 infection by a protein of interest in cultured cells.
    Lai X; Zhuang H; Li T; Xiang K
    STAR Protoc; 2022 Dec; 3(4):101802. PubMed ID: 36345374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure of the Brd4 ET domain bound to a C-terminal motif from γ-retroviral integrases reveals a conserved mechanism of interaction.
    Crowe BL; Larue RC; Yuan C; Hess S; Kvaratskhelia M; Foster MP
    Proc Natl Acad Sci U S A; 2016 Feb; 113(8):2086-91. PubMed ID: 26858406
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of SARS-CoV-2 spike protein binding to ACE2 in living cells by TR-FRET.
    Cecon E; Dam J; Jockers R
    STAR Protoc; 2022 Mar; 3(1):101024. PubMed ID: 34841271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for studying co-infection between SARS-CoV-2 and Staphylococcus aureus in vitro.
    Goncheva MI; Heinrichs DE
    STAR Protoc; 2023 Sep; 4(3):102411. PubMed ID: 37393614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Luciferase reporter assays to monitor interferon signaling modulation by SARS-CoV-2 proteins.
    Hirschenberger M; Hayn M; Laliberté A; Koepke L; Kirchhoff F; Sparrer KMJ
    STAR Protoc; 2021 Dec; 2(4):100781. PubMed ID: 34405154
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mass spectrometry and proteome analysis to identify SARS-CoV-2 protein from COVID-19 patient swab samples.
    Banerjee A; Pai MGJ; Singh A; Nissa MU; Srivastava S
    STAR Protoc; 2022 Mar; 3(1):101177. PubMed ID: 35233542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol to isolate and assess spike protein cleavage in SARS-CoV-2 variants obtained from clinical COVID-19 samples.
    Escalera A; García-Sastre A; Aydillo T
    STAR Protoc; 2022 Sep; 3(3):101502. PubMed ID: 35776647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation.
    Helfer CM; Yan J; You J
    Viruses; 2014 Aug; 6(8):3228-49. PubMed ID: 25140737
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SARS-CoV-2 Spike Protein Induces Paracrine Senescence and Leukocyte Adhesion in Endothelial Cells.
    Meyer K; Patra T; Vijayamahantesh ; Ray R
    J Virol; 2021 Aug; 95(17):e0079421. PubMed ID: 34160250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocol to detect infectious SARS-CoV-2 at low levels using in situ hybridization techniques.
    Cottignies-Calamarte A; He F; Zhu A; Real F; Bomsel M
    STAR Protoc; 2023 Dec; 4(4):102593. PubMed ID: 37738115
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relevance of BET Family Proteins in SARS-CoV-2 Infection.
    Lara-Ureña N; García-Domínguez M
    Biomolecules; 2021 Jul; 11(8):. PubMed ID: 34439792
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dimerization of the papillomavirus E2 protein is required for efficient mitotic chromosome association and Brd4 binding.
    Cardenas-Mora J; Spindler JE; Jang MK; McBride AA
    J Virol; 2008 Aug; 82(15):7298-305. PubMed ID: 18495759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. BRD4 associates with p53 in DNMT3A-mutated leukemia cells and is implicated in apoptosis by the bromodomain inhibitor JQ1.
    Stewart HJ; Horne GA; Bastow S; Chevassut TJ
    Cancer Med; 2013 Dec; 2(6):826-35. PubMed ID: 24403256
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.