BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36596423)

  • 1. Impacts of dissolved organic matter on the aggregation and photo-dissolution of cadmium pigment nanoparticles in aquatic systems.
    Yang S; Wei P; Wang J; Tan Y; Qu X
    Sci Total Environ; 2023 Mar; 865():161313. PubMed ID: 36596423
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes.
    Yu S; Shen M; Li S; Fu Y; Zhang D; Liu H; Liu J
    Environ Pollut; 2019 Dec; 255(Pt 2):113302. PubMed ID: 31597113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Colloidal stability and aggregation behavior of CdS colloids in aquatic systems: Effects of macromolecules, cations, and pH.
    Liu B; Guo C; Ke C; Chen K; Dang Z
    Sci Total Environ; 2023 Apr; 869():161814. PubMed ID: 36708836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter.
    Chekli L; Phuntsho S; Roy M; Shon HK
    Sci Total Environ; 2013 Sep; 461-462():19-27. PubMed ID: 23712112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of monovalent and divalent cations on the stability of silver nanoparticles formed from direct reduction of silver ions by Suwannee River humic acid/natural organic matter.
    Akaighe N; Depner SW; Banerjee S; Sharma VK; Sohn M
    Sci Total Environ; 2012 Dec; 441():277-89. PubMed ID: 23164532
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of molecular weight-dependent physicochemical heterogeneity of natural organic matter on the aggregation of fullerene nanoparticles in mono- and di-valent electrolyte solutions.
    Shen MH; Yin YG; Booth A; Liu JF
    Water Res; 2015 Mar; 71():11-20. PubMed ID: 25577691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heteroaggregation of different surface-modified polystyrene nanoparticles with model natural colloids.
    Yu SJ; Li QC; Shan WY; Hao ZN; Li P; Liu JF
    Sci Total Environ; 2021 Aug; 784():147190. PubMed ID: 33895519
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Specific ion effects on the aggregation behavior of aquatic natural organic matter.
    Xu F; Yao Y; Alvarez PJJ; Li Q; Fu H; Yin D; Zhu D; Qu X
    J Colloid Interface Sci; 2019 Nov; 556():734-742. PubMed ID: 31505330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Threshold Concentrations of Silver Ions Exist for the Sunlight-Induced Formation of Silver Nanoparticles in the Presence of Natural Organic Matter.
    Liu H; Gu X; Wei C; Fu H; Alvarez PJJ; Li Q; Zheng S; Qu X; Zhu D
    Environ Sci Technol; 2018 Apr; 52(7):4040-4050. PubMed ID: 29505247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sunlight irradiation triggers changes in the fouling potentials of natural dissolved organic matter.
    Zhou Z; Zhou M; Yang X; Niu J; Meng F
    Sci Total Environ; 2018 Jun; 627():227-234. PubMed ID: 29426145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural organic matter concentration and hydrochemistry influence aggregation kinetics of functionalized engineered nanoparticles.
    Liu J; Legros S; von der Kammer F; Hofmann T
    Environ Sci Technol; 2013 May; 47(9):4113-20. PubMed ID: 23560437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of natural organic matter on particle behavior and phototoxicity of titanium dioxide nanoparticles.
    Li S; Ma H; Wallis LK; Etterson MA; Riley B; Hoff DJ; Diamond SA
    Sci Total Environ; 2016 Jan; 542(Pt A):324-33. PubMed ID: 26519592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chlorpyrifos fate in the Arctic: Importance of analyte structure in interactions with Arctic dissolved organic matter.
    O'Connor LE; Robison P; Quesada G; Kerrigan JF; O'Halloran RC; Guerard JJ; Chin YP
    Water Res; 2023 Aug; 242():120154. PubMed ID: 37327545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of environmental and biological macromolecules on aggregation kinetics of nanoplastics in aquatic systems.
    Liu Y; Huang Z; Zhou J; Tang J; Yang C; Chen C; Huang W; Dang Z
    Water Res; 2020 Nov; 186():116316. PubMed ID: 32829180
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aggregation kinetics of multiwalled carbon nanotubes in aquatic systems: measurements and environmental implications.
    Saleh NB; Pfefferle LD; Elimelech M
    Environ Sci Technol; 2008 Nov; 42(21):7963-9. PubMed ID: 19031888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combined effects of photoaging and natural organic matter on the colloidal stability of nanoplastics in aquatic environments.
    Xu Y; Ou Q; Li X; Wang X; van der Hoek JP; Liu G
    Water Res; 2022 Nov; 226():119313. PubMed ID: 36369686
    [TBL] [Abstract][Full Text] [Related]  

  • 17. TiO2 nanoparticles aggregation and disaggregation in presence of alginate and Suwannee River humic acids. pH and concentration effects on nanoparticle stability.
    Loosli F; Le Coustumer P; Stoll S
    Water Res; 2013 Oct; 47(16):6052-63. PubMed ID: 23969399
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic molecular size transformation of aquatic colloidal organic matter as a function of pH and cations.
    Xu H; Lin H; Jiang H; Guo L
    Water Res; 2018 Nov; 144():543-552. PubMed ID: 30077913
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggregation Behavior of Inorganic 2D Nanomaterials Beyond Graphene: Insights from Molecular Modeling and Modified DLVO Theory.
    Mohona TM; Gupta A; Masud A; Chien SC; Lin LC; Nalam PC; Aich N
    Environ Sci Technol; 2019 Apr; 53(8):4161-4172. PubMed ID: 30884220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aggregation and disaggregation of ZnO nanoparticles: influence of pH and adsorption of Suwannee River humic acid.
    Mohd Omar F; Abdul Aziz H; Stoll S
    Sci Total Environ; 2014 Jan; 468-469():195-201. PubMed ID: 24029691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.