BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 36596435)

  • 1. An experimental and theoretical approach to understand the interaction between particles and mucosal tissues.
    Arzi RS; Davidovich-Pinhas M; Cohen N; Sosnik A
    Acta Biomater; 2023 Mar; 158():449-462. PubMed ID: 36596435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-PEG antibodies alter the mobility and biodistribution of densely PEGylated nanoparticles in mucus.
    Henry CE; Wang YY; Yang Q; Hoang T; Chattopadhyay S; Hoen T; Ensign LM; Nunn KL; Schroeder H; McCallen J; Moench T; Cone R; Roffler SR; Lai SK
    Acta Biomater; 2016 Oct; 43():61-70. PubMed ID: 27424083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mucus barrier-triggered disassembly of siRNA nanocarriers.
    Thomsen TB; Li L; Howard KA
    Nanoscale; 2014 Nov; 6(21):12547-54. PubMed ID: 25179224
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoparticle-in-microparticle oral drug delivery system of a clinically relevant darunavir/ritonavir antiretroviral combination.
    Augustine R; Ashkenazi DL; Arzi RS; Zlobin V; Shofti R; Sosnik A
    Acta Biomater; 2018 Jul; 74():344-359. PubMed ID: 29723705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular and cellular cues governing nanomaterial-mucosae interactions: from nanomedicine to nanotoxicology.
    das Neves J; Sverdlov Arzi R; Sosnik A
    Chem Soc Rev; 2020 Jul; 49(14):5058-5100. PubMed ID: 32538405
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mucus-Mimicking Mucin-Based Hydrogels by Tandem Chemical and Physical Crosslinking.
    Porfiryeva NN; Zlotver I; Davidovich-Pinhas M; Sosnik A
    Macromol Biosci; 2024 Mar; ():e2400028. PubMed ID: 38511568
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-based mucus penetrating nanoparticles and their biophysical interactions with pulmonary mucus layer.
    Alp G; Aydogan N
    Eur J Pharm Biopharm; 2020 Apr; 149():45-57. PubMed ID: 32014491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disruption of the mucus barrier by topically applied exogenous particles.
    McGill SL; Smyth HD
    Mol Pharm; 2010 Dec; 7(6):2280-8. PubMed ID: 20919744
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery.
    Newby JM; Seim I; Lysy M; Ling Y; Huckaby J; Lai SK; Forest MG
    Adv Drug Deliv Rev; 2018 Jan; 124():64-81. PubMed ID: 29246855
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Food-grade TiO
    Talbot P; Radziwill-Bienkowska JM; Kamphuis JBJ; Steenkeste K; Bettini S; Robert V; Noordine ML; Mayeur C; Gaultier E; Langella P; Robbe-Masselot C; Houdeau E; Thomas M; Mercier-Bonin M
    J Nanobiotechnology; 2018 Jun; 16(1):53. PubMed ID: 29921300
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle diffusion within intestinal mucus: Three-dimensional response analysis dissecting the impact of particle surface charge, size and heterogeneity across polyelectrolyte, pegylated and viral particles.
    Abdulkarim M; Agulló N; Cattoz B; Griffiths P; Bernkop-Schnürch A; Borros SG; Gumbleton M
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):230-8. PubMed ID: 25661585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic Acid Molecular Weight-Dependent Modulation of Mucin Nanostructure for Potential Mucosal Therapeutic Applications.
    Hansen IM; Ebbesen MF; Kaspersen L; Thomsen T; Bienk K; Cai Y; Malle BM; Howard KA
    Mol Pharm; 2017 Jul; 14(7):2359-2367. PubMed ID: 28499338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Disassembling the complexity of mucus barriers to develop a fast screening tool for early drug discovery.
    Pacheco DP; Butnarasu CS; Briatico Vangosa F; Pastorino L; Visai L; Visentin S; Petrini P
    J Mater Chem B; 2019 Aug; 7(32):4940-4952. PubMed ID: 31411620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues.
    Lai SK; Wang YY; Hanes J
    Adv Drug Deliv Rev; 2009 Feb; 61(2):158-71. PubMed ID: 19133304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "Mucus-on-Chip": A new tool to study the dynamic penetration of nanoparticulate drug carriers into mucus.
    Jia Z; Guo Z; Yang CT; Prestidge C; Thierry B
    Int J Pharm; 2021 Apr; 598():120391. PubMed ID: 33621642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cyclosporine A Nanosuspensions for Ophthalmic Delivery: A Comparative Study between Cationic Nanoparticles and Drug-Core Mucus Penetrating Nanoparticles.
    Yan R; Xu L; Wang Q; Wu Z; Zhang H; Gan L
    Mol Pharm; 2021 Dec; 18(12):4290-4298. PubMed ID: 34731571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mucus as a barrier to drug delivery – understanding and mimicking the barrier properties.
    Boegh M; Nielsen HM
    Basic Clin Pharmacol Toxicol; 2015 Mar; 116(3):179-86. PubMed ID: 25349046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mucus models to evaluate the diffusion of drugs and particles.
    Lock JY; Carlson TL; Carrier RL
    Adv Drug Deliv Rev; 2018 Jan; 124():34-49. PubMed ID: 29117512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mucus permeating thiomer nanoparticles.
    Köllner S; Dünnhaupt S; Waldner C; Hauptstein S; Pereira de Sousa I; Bernkop-Schnürch A
    Eur J Pharm Biopharm; 2015 Nov; 97(Pt A):265-72. PubMed ID: 25603199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.