BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36597019)

  • 21. Parameter tuning in machine learning based on radiomics biomarkers of lung cancer.
    Luo Y; Li Y; Zhang Y; Zhang J; Liang M; Jiang L; Guo L
    J Xray Sci Technol; 2022; 30(3):477-490. PubMed ID: 35342074
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Diagnostic Performance of 2D and 3D T2WI-Based Radiomics Features With Machine Learning Algorithms to Distinguish Solid Solitary Pulmonary Lesion.
    Wan Q; Zhou J; Xia X; Hu J; Wang P; Peng Y; Zhang T; Sun J; Song Y; Yang G; Li X
    Front Oncol; 2021; 11():683587. PubMed ID: 34868905
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterisation of prostate cancer using texture analysis for diagnostic and prognostic monitoring.
    Singh D; Kumar V; Das CJ; Singh A; Mehndiratta A
    NMR Biomed; 2021 Jun; 34(6):e4495. PubMed ID: 33638244
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An Efficient Feature Selection Strategy Based on Multiple Support Vector Machine Technology with Gene Expression Data.
    Zhang Y; Deng Q; Liang W; Zou X
    Biomed Res Int; 2018; 2018():7538204. PubMed ID: 30228989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Machine learning prediction of prostate cancer from transrectal ultrasound video clips.
    Wang K; Chen P; Feng B; Tu J; Hu Z; Zhang M; Yang J; Zhan Y; Yao J; Xu D
    Front Oncol; 2022; 12():948662. PubMed ID: 36091110
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequential versus spatial colour textons for breast TMA classification.
    Fernández-Carrobles MM; Bueno G; Déniz O; Salido J; García-Rojo M; Gonzández-López L
    Comput Med Imaging Graph; 2015 Jun; 42():25-37. PubMed ID: 25499960
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preoperative MRI-Based Radiomic Machine-Learning Nomogram May Accurately Distinguish Between Benign and Malignant Soft-Tissue Lesions: A Two-Center Study.
    Wang H; Zhang J; Bao S; Liu J; Hou F; Huang Y; Chen H; Duan S; Hao D; Liu J
    J Magn Reson Imaging; 2020 Sep; 52(3):873-882. PubMed ID: 32112598
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning application for incident prostate adenocarcinomas automatic registration in a French regional cancer registry.
    Fabacher T; Godet J; Klein D; Velten M; Jegu J
    Int J Med Inform; 2020 Jul; 139():104139. PubMed ID: 32330852
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development and head-to-head comparison of machine-learning models to identify patients requiring prostate biopsy.
    Yu S; Tao J; Dong B; Fan Y; Du H; Deng H; Cui J; Hong G; Zhang X
    BMC Urol; 2021 May; 21(1):80. PubMed ID: 33993876
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Discrimination between benign and malignant prostate biopsies using three-dimensional chromatin texture analysis by confocal laser scanning microscopy.
    Huisman A; Ploeger LS; Dullens HF; Jonges TN; van Diest PJ
    Anal Quant Cytol Histol; 2011 Oct; 33(5):265-70. PubMed ID: 22611753
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ensemble based system for whole-slide prostate cancer probability mapping using color texture features.
    DiFranco MD; O'Hurley G; Kay EW; Watson RW; Cunningham P
    Comput Med Imaging Graph; 2011; 35(7-8):629-45. PubMed ID: 21269807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dimensional reduction based on peak fitting of Raman micro spectroscopy data improves detection of prostate cancer in tissue specimens.
    Plante A; Dallaire F; Grosset AA; Nguyen T; Birlea M; Wong J; Daoust F; Roy N; Kougioumoutzakis A; Azzi F; Aubertin K; Kadoury S; Latour M; Albadine R; Prendeville S; Boutros P; Fraser M; Bristow RG; van der Kwast T; Orain M; Brisson H; Benzerdjeb N; Hovington H; Bergeron A; Fradet Y; Têtu B; Saad F; Trudel D; Leblond F
    J Biomed Opt; 2021 Nov; 26(11):. PubMed ID: 34743445
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computer-aided diagnosis of prostate cancer in the peripheral zone using multiparametric MRI.
    Niaf E; Rouvière O; Mège-Lechevallier F; Bratan F; Lartizien C
    Phys Med Biol; 2012 Jun; 57(12):3833-51. PubMed ID: 22640958
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers.
    Deist TM; Dankers FJWM; Valdes G; Wijsman R; Hsu IC; Oberije C; Lustberg T; van Soest J; Hoebers F; Jochems A; El Naqa I; Wee L; Morin O; Raleigh DR; Bots W; Kaanders JH; Belderbos J; Kwint M; Solberg T; Monshouwer R; Bussink J; Dekker A; Lambin P
    Med Phys; 2018 Jul; 45(7):3449-3459. PubMed ID: 29763967
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of Pathological Upgrading at Radical Prostatectomy in Prostate Cancer Eligible for Active Surveillance: A Texture Features and Machine Learning-Based Analysis of Apparent Diffusion Coefficient Maps.
    Xie J; Li B; Min X; Zhang P; Fan C; Li Q; Wang L
    Front Oncol; 2020; 10():604266. PubMed ID: 33614487
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Support Vector Machines (SVM) classification of prostate cancer Gleason score in central gland using multiparametric magnetic resonance images: A cross-validated study.
    Li J; Weng Z; Xu H; Zhang Z; Miao H; Chen W; Liu Z; Zhang X; Wang M; Xu X; Ye Q
    Eur J Radiol; 2018 Jan; 98():61-67. PubMed ID: 29279171
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prostate Cancer Risk Stratification in Men With a Clinical Suspicion of Prostate Cancer Using a Unique Biparametric MRI and Expression of 11 Genes in Apparently Benign Tissue: Evaluation Using Machine-Learning Techniques.
    Montoya Perez I; Jambor I; Pahikkala T; Airola A; Merisaari H; Saunavaara J; Alinezhad S; Väänänen RM; Tallgrén T; Verho J; Kiviniemi A; Ettala O; Knaapila J; Syvänen KT; Kallajoki M; Vainio P; Aronen HJ; Pettersson K; Boström PJ; Taimen P
    J Magn Reson Imaging; 2020 May; 51(5):1540-1553. PubMed ID: 31588660
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optimization of breast mass classification using sequential forward floating selection (SFFS) and a support vector machine (SVM) model.
    Tan M; Pu J; Zheng B
    Int J Comput Assist Radiol Surg; 2014 Nov; 9(6):1005-20. PubMed ID: 24664267
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of ischemic stroke diagnosis models based on machine learning.
    Yang WX; Wang FF; Pan YY; Xie JQ; Lu MH; You CG
    Front Neurol; 2022; 13():1014346. PubMed ID: 36545400
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.