These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 36597512)
1. Gut-on-a-chip for exploring the transport mechanism of Hg(II). Wang L; Han J; Su W; Li A; Zhang W; Li H; Hu H; Song W; Xu C; Chen J Microsyst Nanoeng; 2023; 9():2. PubMed ID: 36597512 [TBL] [Abstract][Full Text] [Related]
2. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Kim HJ; Huh D; Hamilton G; Ingber DE Lab Chip; 2012 Jun; 12(12):2165-74. PubMed ID: 22434367 [TBL] [Abstract][Full Text] [Related]
3. TEER and Ion Selective Transwell-Integrated Sensors System for Caco-2 Cell Model. Sciurti E; Blasi L; Prontera CT; Barca A; Giampetruzzi L; Verri T; Siciliano PA; Francioso L Micromachines (Basel); 2023 Feb; 14(3):. PubMed ID: 36984903 [TBL] [Abstract][Full Text] [Related]
4. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
5. Participation of divalent cation transporter DMT1 in the uptake of inorganic mercury. Vázquez M; Vélez D; Devesa V; Puig S Toxicology; 2015 May; 331():119-24. PubMed ID: 25772431 [TBL] [Abstract][Full Text] [Related]
6. Development of Real-Time Transendothelial Electrical Resistance Monitoring for an In Vitro Blood-Brain Barrier System. Tu KH; Yu LS; Sie ZH; Hsu HY; Al-Jamal KT; Wang JT; Chiang YY Micromachines (Basel); 2020 Dec; 12(1):. PubMed ID: 33396953 [TBL] [Abstract][Full Text] [Related]
7. Direct quantification of transendothelial electrical resistance in organs-on-chips. van der Helm MW; Odijk M; Frimat JP; van der Meer AD; Eijkel JCT; van den Berg A; Segerink LI Biosens Bioelectron; 2016 Nov; 85():924-929. PubMed ID: 27315517 [TBL] [Abstract][Full Text] [Related]
8. High glucose-induced intestinal epithelial barrier damage is aggravated by syndecan-1 destruction and heparanase overexpression. Qing Q; Zhang S; Chen Y; Li R; Mao H; Chen Q J Cell Mol Med; 2015 Jun; 19(6):1366-74. PubMed ID: 25702768 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the intestinal absorption of inorganic mercury in Caco-2 cells. Vázquez M; Devesa V; Vélez D Toxicol In Vitro; 2015 Feb; 29(1):93-102. PubMed ID: 25283090 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic bioreactor with integrated transepithelial electrical resistance (TEER) measurement electrodes for evaluation of renal epithelial cells. Ferrell N; Desai RR; Fleischman AJ; Roy S; Humes HD; Fissell WH Biotechnol Bioeng; 2010 Nov; 107(4):707-16. PubMed ID: 20552673 [TBL] [Abstract][Full Text] [Related]
11. Strain sensor on a chip for quantifying the magnitudes of tensile stress on cells. Zhang Y; Wang Y; Yin H; Wang J; Liu N; Zhong S; Li L; Zhang Q; Yue T Microsyst Nanoeng; 2024; 10():88. PubMed ID: 38919164 [TBL] [Abstract][Full Text] [Related]
12. Fish-gut-on-chip: development of a microfluidic bioreactor to study the role of the fish intestine in vitro. Drieschner C; Könemann S; Renaud P; Schirmer K Lab Chip; 2019 Sep; 19(19):3268-3276. PubMed ID: 31482163 [TBL] [Abstract][Full Text] [Related]
13. Real-time quantitative monitoring of Gholizadeh H; Ong HX; Bradbury P; Kourmatzis A; Traini D; Young P; Li M; Cheng S Expert Opin Drug Deliv; 2021 Jun; 18(6):803-818. PubMed ID: 33410717 [TBL] [Abstract][Full Text] [Related]
14. Barrier-on-a-Chip with a Modular Architecture and Integrated Sensors for Real-Time Measurement of Biological Barrier Function. Zoio P; Lopes-Ventura S; Oliva A Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357226 [TBL] [Abstract][Full Text] [Related]
16. Combining Human Organoids and Organ-on-a-Chip Technology to Model Intestinal Region-Specific Functionality. Kulkarni G; Apostolou A; Ewart L; Lucchesi C; Kasendra M J Vis Exp; 2022 May; (183):. PubMed ID: 35604153 [TBL] [Abstract][Full Text] [Related]
17. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. van der Helm MW; Henry OYF; Bein A; Hamkins-Indik T; Cronce MJ; Leineweber WD; Odijk M; van der Meer AD; Eijkel JCT; Ingber DE; van den Berg A; Segerink LI Lab Chip; 2019 Jan; 19(3):452-463. PubMed ID: 30632575 [TBL] [Abstract][Full Text] [Related]
18. Human Intestinal Morphogenesis Controlled by Transepithelial Morphogen Gradient and Flow-Dependent Physical Cues in a Microengineered Gut-on-a-Chip. Shin W; Hinojosa CD; Ingber DE; Kim HJ iScience; 2019 May; 15():391-406. PubMed ID: 31108394 [TBL] [Abstract][Full Text] [Related]
19. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551 [TBL] [Abstract][Full Text] [Related]
20. Tissue-on-a-Chip: Microphysiometry With Human 3D Models on Transwell Inserts. Schmidt C; Markus J; Kandarova H; Wiest J Front Bioeng Biotechnol; 2020; 8():760. PubMed ID: 32850693 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]