These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. CRISPR/Cas9-mediated disruption of TaNP1 genes results in complete male sterility in bread wheat. Li J; Wang Z; He G; Ma L; Deng XW J Genet Genomics; 2020 May; 47(5):263-272. PubMed ID: 32694014 [TBL] [Abstract][Full Text] [Related]
23. Secondary siRNAs from Medicago NB-LRRs modulated via miRNA-target interactions and their abundances. Fei Q; Li P; Teng C; Meyers BC Plant J; 2015 Aug; 83(3):451-65. PubMed ID: 26042408 [TBL] [Abstract][Full Text] [Related]
24. Coexpression network and trans-activation analyses of maize reproductive phasiRNA loci. Zhan J; O'Connor L; Marchant DB; Teng C; Walbot V; Meyers BC Plant J; 2023 Jan; 113(1):160-173. PubMed ID: 36440497 [TBL] [Abstract][Full Text] [Related]
25. Extensive Families of miRNAs and PHAS Loci in Norway Spruce Demonstrate the Origins of Complex phasiRNA Networks in Seed Plants. Xia R; Xu J; Arikit S; Meyers BC Mol Biol Evol; 2015 Nov; 32(11):2905-18. PubMed ID: 26318183 [TBL] [Abstract][Full Text] [Related]
26. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Komiya R; Ohyanagi H; Niihama M; Watanabe T; Nakano M; Kurata N; Nonomura K Plant J; 2014 May; 78(3):385-97. PubMed ID: 24635777 [TBL] [Abstract][Full Text] [Related]
27. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Zhai J; Zhang H; Arikit S; Huang K; Nan GL; Walbot V; Meyers BC Proc Natl Acad Sci U S A; 2015 Mar; 112(10):3146-51. PubMed ID: 25713378 [TBL] [Abstract][Full Text] [Related]
28. Degradome sequencing-based identification of phasiRNAs biogenesis pathways in Oryza sativa. Yu L; Guo R; Jiang Y; Ye X; Yang Z; Meng Y; Shao C BMC Genomics; 2021 Jan; 22(1):93. PubMed ID: 33516199 [TBL] [Abstract][Full Text] [Related]
29. CRISPR/Cas9-mediated knockout of Ms1 enables the rapid generation of male-sterile hexaploid wheat lines for use in hybrid seed production. Okada A; Arndell T; Borisjuk N; Sharma N; Watson-Haigh NS; Tucker EJ; Baumann U; Langridge P; Whitford R Plant Biotechnol J; 2019 Oct; 17(10):1905-1913. PubMed ID: 30839150 [TBL] [Abstract][Full Text] [Related]
30. CRISPR/Cas9-mediated knockout of the DCL2 and DCL4 genes in Nicotiana benthamiana and its productivity of recombinant proteins. Matsuo K Plant Cell Rep; 2022 Feb; 41(2):307-317. PubMed ID: 34783883 [TBL] [Abstract][Full Text] [Related]
31. Phased secondary small interfering RNAs in Panaxnotoginseng. Chen K; Liu L; Zhang X; Yuan Y; Ren S; Guo J; Wang Q; Liao P; Li S; Cui X; Li YF; Zheng Y BMC Genomics; 2018 Jan; 19(Suppl 1):41. PubMed ID: 29363419 [TBL] [Abstract][Full Text] [Related]
32. Grass phasiRNAs and male fertility. Yu Y; Zhou Y; Zhang Y; Chen Y Sci China Life Sci; 2018 Feb; 61(2):148-154. PubMed ID: 29052095 [TBL] [Abstract][Full Text] [Related]
33. Conserved and non-conserved triggers of 24-nucleotide reproductive phasiRNAs in eudicots. Pokhrel S; Huang K; Meyers BC Plant J; 2021 Sep; 107(5):1332-1345. PubMed ID: 34160111 [TBL] [Abstract][Full Text] [Related]
34. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Fei Q; Xia R; Meyers BC Plant Cell; 2013 Jul; 25(7):2400-15. PubMed ID: 23881411 [TBL] [Abstract][Full Text] [Related]
35. EAT1 transcription factor, a non-cell-autonomous regulator of pollen production, activates meiotic small RNA biogenesis in rice anther tapetum. Ono S; Liu H; Tsuda K; Fukai E; Tanaka K; Sasaki T; Nonomura KI PLoS Genet; 2018 Feb; 14(2):e1007238. PubMed ID: 29432414 [TBL] [Abstract][Full Text] [Related]
36. Genome-wide identification of phasiRNAs in Arabidopsis thaliana, and insights into biogenesis, temperature sensitivity, and organ specificity. Feng Z; Ma X; Wu X; Wu W; Shen B; Li S; Tang Y; Wang J; Shao C; Meng Y Plant Cell Environ; 2024 Oct; 47(10):3797-3812. PubMed ID: 38798197 [TBL] [Abstract][Full Text] [Related]
37. Method for the Large-Scale Identification of phasiRNAs in Brachypodium distachyon. Yang K; Wen X; Sablok G Methods Mol Biol; 2018; 1667():187-194. PubMed ID: 29039012 [TBL] [Abstract][Full Text] [Related]
38. Comparison of Small RNA Profiles of Glycine max and Glycine soja at Early Developmental Stages. Sun Y; Mui Z; Liu X; Yim AK; Qin H; Wong FL; Chan TF; Yiu SM; Lam HM; Lim BL Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27929436 [TBL] [Abstract][Full Text] [Related]