These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 36597875)

  • 21. Calculated DNA damage from gadolinium Auger electrons and relation to dose distributions in a head phantom.
    Goorley T; Zamenhof R; Nikjoo H
    Int J Radiat Biol; 2004; 80(11-12):933-40. PubMed ID: 15764405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Direct and Auger Electron-Induced, Single- and Double-Strand Breaks on Plasmid DNA Caused by 99mTc-Labeled Pyrene Derivatives and the Effect of Bonding Distance.
    Reissig F; Mamat C; Steinbach J; Pietzsch HJ; Freudenberg R; Navarro-Retamal C; Caballero J; Kotzerke J; Wunderlich G
    PLoS One; 2016; 11(9):e0161973. PubMed ID: 27583677
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PARP-1-Targeted Auger Emitters Display High-LET Cytotoxic Properties In Vitro but Show Limited Therapeutic Utility in Solid Tumor Models of Human Neuroblastoma.
    Lee H; Riad A; Martorano P; Mansfield A; Samanta M; Batra V; Mach RH; Maris JM; Pryma DA; Makvandi M
    J Nucl Med; 2020 Jun; 61(6):850-856. PubMed ID: 31676730
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Establishment of patient‑derived lung tumorspheres and their response to internal irradiation by Auger electrons.
    Madsen KL; Langkjær N; Gerke O; Høilund-Carlsen PF; Olsen BB
    Int J Oncol; 2022 Mar; 60(3):. PubMed ID: 35191520
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new calculational method to assess the therapeutic potential of Auger electron emission.
    Humm JL; Charlton DE
    Int J Radiat Oncol Biol Phys; 1989 Aug; 17(2):351-60. PubMed ID: 2753759
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The effect of hypoxia on the induction of strand breaks in plasmid DNA by alpha-, beta- and Auger electron-emitters
    Reissig F; Wunderlich G; Runge R; Freudenberg R; Lühr A; Kotzerke J
    Nucl Med Biol; 2020; 80-81():65-70. PubMed ID: 32001104
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The human polynucleotide kinase/phosphatase (hPNKP) inhibitor A12B4C3 radiosensitizes human myeloid leukemia cells to Auger electron-emitting anti-CD123 ¹¹¹In-NLS-7G3 radioimmunoconjugates.
    Zereshkian A; Leyton JV; Cai Z; Bergstrom D; Weinfeld M; Reilly RM
    Nucl Med Biol; 2014; 41(5):377-83. PubMed ID: 24637100
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Auger electrons for cancer therapy - a review.
    Ku A; Facca VJ; Cai Z; Reilly RM
    EJNMMI Radiopharm Chem; 2019 Oct; 4(1):27. PubMed ID: 31659527
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of distance between decaying (125)I and DNA on Auger-electron induced double-strand break yield.
    Balagurumoorthy P; Xu X; Wang K; Adelstein SJ; Kassis AI
    Int J Radiat Biol; 2012 Dec; 88(12):998-1008. PubMed ID: 22732063
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The quest to exploit the Auger effect in cancer radiotherapy - a reflective review.
    Martin RF; Feinendegen LE
    Int J Radiat Biol; 2016 Nov; 92(11):617-632. PubMed ID: 26926313
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibody-based cancer treatment with ultra-short range Auger electron-emitting radionuclides: dual receptor and DNA targeting strategies.
    Karagiannis TC
    Hell J Nucl Med; 2007; 10(3):155-9. PubMed ID: 18084655
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epidermal growth factor receptor inhibition modulates the nuclear localization and cytotoxicity of the Auger electron emitting radiopharmaceutical 111In-DTPA human epidermal growth factor.
    Bailey KE; Costantini DL; Cai Z; Scollard DA; Chen Z; Reilly RM; Vallis KA
    J Nucl Med; 2007 Sep; 48(9):1562-70. PubMed ID: 17704253
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Distribution of DNA strand breaks produced by iodine-123 and indium-111 in synthetic oligodeoxynucleotides.
    Karamychev VN; Reed MW; Neumann RD; Panyutin IG
    Acta Oncol; 2000; 39(6):687-92. PubMed ID: 11130005
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluating 99mTc Auger electrons for targeted tumor radiotherapy by computational methods.
    Tavares AA; Tavares JM
    Med Phys; 2010 Jul; 37(7):3551-9. PubMed ID: 20831062
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rational evaluation of the therapeutic effect and dosimetry of auger electrons for radionuclide therapy in a cell culture model.
    Shinohara A; Hanaoka H; Sakashita T; Sato T; Yamaguchi A; Ishioka NS; Tsushima Y
    Ann Nucl Med; 2018 Feb; 32(2):114-122. PubMed ID: 29238922
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dose evaluation of auger electrons emitted from the
    Bastami H; Chiniforoush TA; Heidari S; Sadeghi M
    Appl Radiat Isot; 2022 Jul; 185():110250. PubMed ID: 35483113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Auger radiation targeted into DNA: a therapy perspective.
    Buchegger F; Perillo-Adamer F; Dupertuis YM; Delaloye AB
    Eur J Nucl Med Mol Imaging; 2006 Nov; 33(11):1352-63. PubMed ID: 16896663
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA breakage by decay of Auger electron emitters: experiments with 123I-iodoHoechst 33258 and plasmid DNA.
    Lobachevsky PN; Martin RF
    Radiat Res; 2005 Dec; 164(6):766-73. PubMed ID: 16296882
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Iodine-125 decay in a synthetic oligodeoxynucleotide. II. The role of auger electron irradiation compared to charge neutralization in DNA breakage.
    Lobachevsky PN; Martin RF
    Radiat Res; 2000 Mar; 153(3):271-8. PubMed ID: 10669548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. On the biological efficiency of I-123 and I-125 decay on the molecular level.
    Terrissol M; Peudon A; Kummerle E; Pomplun E
    Int J Radiat Biol; 2008 Dec; 84(12):1063-8. PubMed ID: 19061131
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.