These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
398 related articles for article (PubMed ID: 36597945)
1. Achieving structural stability and enhanced electrochemical performance through Nb-doping into Li- and Mn-rich layered cathode for lithium-ion batteries. Yun S; Yu J; Lee W; Lee H; Yoon WS Mater Horiz; 2023 Mar; 10(3):829-841. PubMed ID: 36597945 [TBL] [Abstract][Full Text] [Related]
2. Encouraging Voltage Stability upon Long Cycling of Li-Rich Mn-Based Cathode Materials by Ta-Mo Dual Doping. Yang J; Chen Y; Li Y; Xi X; Zheng J; Zhu Y; Xiong Y; Liu S ACS Appl Mater Interfaces; 2021 Jun; 13(22):25981-25992. PubMed ID: 34039001 [TBL] [Abstract][Full Text] [Related]
3. Remarkably Improved Electrochemical Performance of Li- and Mn-Rich Cathodes upon Substitution of Mn with Ni. Kumar Nayak P; Grinblat J; Levi E; Penki TR; Levi M; Sun YK; Markovsky B; Aurbach D ACS Appl Mater Interfaces; 2017 Feb; 9(5):4309-4319. PubMed ID: 27669499 [TBL] [Abstract][Full Text] [Related]
4. Suppression and Mechanism of Voltage Decay in Sb-Doped Lithium-Rich Layered Oxide Cathode Materials. Chen Z; Liu Q; Yan X; Zhu H; Liu J; Duan J; Wang Y J Phys Chem Lett; 2022 Sep; 13(35):8214-8220. PubMed ID: 36006863 [TBL] [Abstract][Full Text] [Related]
5. Cut-off voltage influencing the voltage decay of single crystal lithium-rich manganese-based cathode materials in lithium-ion batteries. Yuan MM; Wang LD; Zhang J; Ran MJ; Wang K; Hu ZY; Van Tendeloo G; Li Y; Su BL J Colloid Interface Sci; 2024 Nov; 674():238-248. PubMed ID: 38936080 [TBL] [Abstract][Full Text] [Related]
6. A current collect-free Li Ye H; Cao K; Wu X; Zou T; Chai L; Zhao Y; Hu Z; Wang L Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34654004 [TBL] [Abstract][Full Text] [Related]
7. The Role of Zr Doping in Stabilizing Li[Ni Choi J; Lee SY; Yoon S; Kim KH; Kim M; Hong SH ChemSusChem; 2019 Jun; 12(11):2439-2446. PubMed ID: 30916373 [TBL] [Abstract][Full Text] [Related]
8. Surface Li Ding X; Li YX; He XD; Liao JY; Hu Q; Chen F; Zhang XQ; Zhao Y; Chen CH ACS Appl Mater Interfaces; 2019 Aug; 11(34):31477-31483. PubMed ID: 31385689 [TBL] [Abstract][Full Text] [Related]
9. Insights into the Enhanced Structural and Thermal Stabilities of Nb-Substituted Lithium-Rich Layered Oxide Cathodes. Zhang C; Wei B; Jiang W; Wang M; Hu W; Liang C; Wang T; Chen L; Zhang R; Wang P; Wei W ACS Appl Mater Interfaces; 2021 Sep; 13(38):45619-45629. PubMed ID: 34530607 [TBL] [Abstract][Full Text] [Related]
11. Improving electrochemical performances of Lithium-rich oxide by cooperatively doping Cr and coating Li Tai Z; Zhu W; Shi M; Xin Y; Guo S; Wu Y; Chen Y; Liu Y J Colloid Interface Sci; 2020 Sep; 576():468-475. PubMed ID: 32473416 [TBL] [Abstract][Full Text] [Related]
12. Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathodes for Li-ion batteries. Nayak PK; Grinblat J; Levi E; Levi M; Markovsky B; Aurbach D Phys Chem Chem Phys; 2017 Feb; 19(8):6142-6152. PubMed ID: 28191568 [TBL] [Abstract][Full Text] [Related]
13. Enhancing the Electrochemical Performance and Structural Stability of Ni-Rich Layered Cathode Materials via Dual-Site Doping. Chu M; Huang Z; Zhang T; Wang R; Shao T; Wang C; Zhu W; He L; Chen J; Zhao W; Xiao Y ACS Appl Mater Interfaces; 2021 May; 13(17):19950-19958. PubMed ID: 33891814 [TBL] [Abstract][Full Text] [Related]
14. Impacts of Mg doping on the structural properties and degradation mechanisms of a Li and Mn rich layered oxide cathode for lithium-ion batteries. Kaewmala S; Kamma N; Buakeaw S; Limphirat W; Nash J; Srilomsak S; Limthongkul P; Meethong N Sci Rep; 2023 Mar; 13(1):4526. PubMed ID: 36941295 [TBL] [Abstract][Full Text] [Related]
15. Effect of Nb and F Co-doping on Li Ming L; Zhang B; Cao Y; Zhang JF; Wang CH; Wang XW; Li H Front Chem; 2018; 6():76. PubMed ID: 29675405 [TBL] [Abstract][Full Text] [Related]
16. Fabrication and Performance of High Energy Li-Ion Battery Based on the Spherical Li[Li(0.2)Ni(0.16)Co(0.1)Mn(0.54)]O2 Cathode and Si Anode. Ye J; Li YX; Zhang L; Zhang XP; Han M; He P; Zhou HS ACS Appl Mater Interfaces; 2016 Jan; 8(1):208-14. PubMed ID: 26651500 [TBL] [Abstract][Full Text] [Related]
17. Regulating Anion Redox and Cation Migration to Enhance the Structural Stability of Li-Rich Layered Oxides. Wang T; Zhang C; Li S; Shen X; Zhou L; Huang Q; Liang C; Wang Z; Wang X; Wei W ACS Appl Mater Interfaces; 2021 Mar; 13(10):12159-12168. PubMed ID: 33666083 [TBL] [Abstract][Full Text] [Related]
18. Surface Heterostructure Induced by PrPO Ding F; Li J; Deng F; Xu G; Liu Y; Yang K; Kang F ACS Appl Mater Interfaces; 2017 Aug; 9(33):27936-27945. PubMed ID: 28758399 [TBL] [Abstract][Full Text] [Related]
19. Restriction of voltage decay by limiting low-voltage reduction in Li-rich oxide materials. Wu Z; Cheng Y; Shi Y; Xia M; Zhang Y; Hu X; Zhou X; Chen Y; Sun J; Liu Y J Colloid Interface Sci; 2022 Aug; 620():57-66. PubMed ID: 35405566 [TBL] [Abstract][Full Text] [Related]
20. Concentration-Gradient Nb-Doping in a Single-Crystal LiNi Wu H; Zhou X; Yang C; Xu D; Zhu YH; Zhou T; Xin S; You Y ACS Appl Mater Interfaces; 2023 Apr; 15(15):18828-18835. PubMed ID: 37036107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]