These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36598407)

  • 1.
    Wang X; Hung TF; Chen FR; Wang WX
    Environ Sci Technol; 2023 Jan; 57(2):1006-1016. PubMed ID: 36598407
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of pH and phosphate on CeO2 nanoparticle dissolution.
    Dahle JT; Livi K; Arai Y
    Chemosphere; 2015 Jan; 119():1365-1371. PubMed ID: 24630459
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Analysis of Growth Behaviors of Cu
    Lin YH; Chen JY; Chen FC; Kuo MY; Hsu YJ; Wu WW
    Anal Chem; 2019 Aug; 91(15):9665-9672. PubMed ID: 31243950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of cuprous oxide epoxy nanocomposite as an environmentally antimicrobial coating.
    M El Saeed A; Abd El-Fattah M; Azzam AM; Dardir MM; Bader MM
    Int J Biol Macromol; 2016 Aug; 89():190-7. PubMed ID: 27103492
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Pot Surface Modification of β-Cu
    Abbas G; Pandey G; Singh KB; Gautam N
    ACS Omega; 2021 Nov; 6(44):29380-29393. PubMed ID: 34778611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxide Nanocrystal Model Catalysts.
    Huang W
    Acc Chem Res; 2016 Mar; 49(3):520-7. PubMed ID: 26938790
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Au@Cu2O core-shell nanoparticles as chemiresistors for gas sensor applications: effect of potential barrier modulation on the sensing performance.
    Rai P; Khan R; Raj S; Majhi SM; Park KK; Yu YT; Lee IH; Sekhar PK
    Nanoscale; 2014 Jan; 6(1):581-8. PubMed ID: 24241354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of Structural Defects on Biomineralized ZnS Nanoparticle Dissolution: An in-Situ Electron Microscopy Study.
    Eskelsen JR; Xu J; Chiu M; Moon JW; Wilkins B; Graham DE; Gu B; Pierce EM
    Environ Sci Technol; 2018 Feb; 52(3):1139-1149. PubMed ID: 29258315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative investigation of ZnO nanoparticle dissolution in the presence of δ-MnO
    Wan B; Hu Z; Yan Y; Liu F; Tan W; Feng X
    Environ Sci Pollut Res Int; 2020 May; 27(13):14751-14762. PubMed ID: 32052339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size-controlled dissolution of organic-coated silver nanoparticles.
    Ma R; Levard C; Marinakos SM; Cheng Y; Liu J; Michel FM; Brown GE; Lowry GV
    Environ Sci Technol; 2012 Jan; 46(2):752-9. PubMed ID: 22142034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Sulfidation on ZnO Nanoparticle Dissolution and Aggregation in Sulfate-Containing Suspensions.
    Rasool K; Lee DS
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7334-40. PubMed ID: 26716331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions: kinetics and size changes.
    Peretyazhko TS; Zhang Q; Colvin VL
    Environ Sci Technol; 2014 Oct; 48(20):11954-61. PubMed ID: 25265014
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cotton decorated with Cu
    Errokh A; Cheikhrouhou W; Ferraria AM; Botelho do Rego AM; Boufi S
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111600. PubMed ID: 33582443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of cuprous oxide nanoparticles on wheat root morphology and genotoxicity.
    Ma ZQ; Xu YC; Fan ZJ; Hou DY; Xu QY
    Ying Yong Sheng Tai Xue Bao; 2021 Mar; 32(3):1105-1111. PubMed ID: 33754578
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intrafibrillar Dispersion of Cuprous Oxide (Cu
    Hillyer MB; Nam S; Condon BD
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431816
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissolution kinetics and solubility of copper oxide nanoparticles as affected by soil properties and aging time.
    Yang Q; Liu Y; Qiu Y; Wang Z; Li H
    Environ Sci Pollut Res Int; 2022 Jun; 29(27):40674-40685. PubMed ID: 35088280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of natural organic matter on the transformation of metal and metal oxide nanoparticles and their ecotoxic potency in vitro.
    Khort A; Brookman-Amissah M; Hedberg J; Chang T; Mei N; Lundberg A; Sturve J; Blomberg E; Odnevall I
    NanoImpact; 2022 Jan; 25():100386. PubMed ID: 35559892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Au nanorod/Cu
    Mahajan H; Cho S
    RSC Adv; 2022 Mar; 12(15):9112-9120. PubMed ID: 35424862
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface modification induced cuprous oxide nanoparticle toxicity to duckweed at sub-toxic metal concentrations.
    Rippner DA; Lien J; Balla H; Guo T; Green PG; Young TM; Parikh SJ
    Sci Total Environ; 2020 Jun; 722():137607. PubMed ID: 32213435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In the Search for Nanospecific Effects of Dissolution of Metallic Nanoparticles at Freshwater-Like Conditions: A Critical Review.
    Hedberg J; Blomberg E; Odnevall Wallinder I
    Environ Sci Technol; 2019 Apr; 53(8):4030-4044. PubMed ID: 30908015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.