These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 36598849)

  • 1. Generation and immunofluorescent validation of gene knockouts in adult human colonic organoids using multi-guide RNA CRISPR-Cas9.
    Chan DKH; Collins SD; Buczacki SJA
    STAR Protoc; 2023 Mar; 4(1):101978. PubMed ID: 36598849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-mediated genome editing in sea urchins.
    Lin CY; Oulhen N; Wessel G; Su YH
    Methods Cell Biol; 2019; 151():305-321. PubMed ID: 30948015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishment of human fetal hepatocyte organoids and CRISPR-Cas9-based gene knockin and knockout in organoid cultures from human liver.
    Hendriks D; Artegiani B; Hu H; Chuva de Sousa Lopes S; Clevers H
    Nat Protoc; 2021 Jan; 16(1):182-217. PubMed ID: 33247284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Drug Resistance Mechanisms Using Genome-Wide CRISPR-Cas9 Screens.
    MacLeod G; Rajakulendran N; Angers S
    Methods Mol Biol; 2022; 2535():141-156. PubMed ID: 35867229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A protocol for efficient CRISPR-Cas9-mediated knock-in in colorectal cancer patient-derived organoids.
    Okamoto T; Natsume Y; Yamanaka H; Fukuda M; Yao R
    STAR Protoc; 2021 Dec; 2(4):100780. PubMed ID: 34585151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of CRISPR-Cas9-mediated genetic knockout human intestinal tissue-derived enteroid lines by lentivirus transduction and single-cell cloning.
    Lin SC; Haga K; Zeng XL; Estes MK
    Nat Protoc; 2022 Apr; 17(4):1004-1027. PubMed ID: 35197604
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of gene-of-interest knockouts in murine organoids using CRISPR-Cas9.
    Huber A; Dijkstra C; Ernst M; Eissmann MF
    STAR Protoc; 2023 Mar; 4(1):102076. PubMed ID: 36853714
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of Human Pyruvate Carboxylase Knockout Cell Lines Using Retrovirus Expressing Short Hairpin RNA and CRISPR-Cas9 as Models to Study Its Metabolic Role in Cancer Research.
    Rattanapornsompong K; Ngamkham J; Chavalit T; Jitrapakdee S
    Methods Mol Biol; 2019; 1916():273-288. PubMed ID: 30535704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generating and Utilizing Murine Cas9-Expressing Intestinal Organoids for Large-Scale Knockout Genetic Screening.
    Kashfi H; Jinks N; Nateri AS
    Methods Mol Biol; 2020; 2171():257-269. PubMed ID: 32705648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple protocol to isolate a single human cell PRDX1 knockout generated by CRISPR-Cas9 system.
    Aouida M; Aljogol D; Ali R; Ramotar D
    STAR Protoc; 2022 Mar; 3(1):101216. PubMed ID: 35284843
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling Wnt signaling by CRISPR-Cas9 genome editing recapitulates neoplasia in human Barrett epithelial organoids.
    Liu X; Cheng Y; Abraham JM; Wang Z; Wang Z; Ke X; Yan R; Shin EJ; Ngamruengphong S; Khashab MA; Zhang G; McNamara G; Ewald AJ; Lin D; Liu Z; Meltzer SJ
    Cancer Lett; 2018 Nov; 436():109-118. PubMed ID: 30144514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid target validation in a Cas9-inducible hiPSC derived kidney model.
    Shamshirgaran Y; Jonebring A; Svensson A; Leefa I; Bohlooly-Y M; Firth M; Woollard KJ; Hofherr A; Rogers IM; Hicks R
    Sci Rep; 2021 Aug; 11(1):16532. PubMed ID: 34400685
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step generation of conditional and reversible gene knockouts.
    Andersson-Rolf A; Mustata RC; Merenda A; Kim J; Perera S; Grego T; Andrews K; Tremble K; Silva JC; Fink J; Skarnes WC; Koo BK
    Nat Methods; 2017 Mar; 14(3):287-289. PubMed ID: 28135257
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of two CRISPR-Cas9 genome editing protocols for rapid generation of Trypanosoma cruzi gene knockout mutants.
    Burle-Caldas GA; Soares-Simões M; Lemos-Pechnicki L; DaRocha WD; Teixeira SMR
    Int J Parasitol; 2018 Jul; 48(8):591-596. PubMed ID: 29577891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR/Cas9-Mediated Genome Editing of Mouse Small Intestinal Organoids.
    Schwank G; Clevers H
    Methods Mol Biol; 2016; 1422():3-11. PubMed ID: 27246017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of Functional Gene Knockout Melanoma Cell Lines by CRISPR-Cas9 Gene Editing.
    Hargadon KM; Bushhouse DZ; Johnson CE; Williams CJ
    Methods Mol Biol; 2021; 2265():25-46. PubMed ID: 33704703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Protocol for Multiple Gene Knockout in Mouse Small Intestinal Organoids Using a CRISPR-concatemer.
    Merenda A; Andersson-Rolf A; Mustata RC; Li T; Kim H; Koo BK
    J Vis Exp; 2017 Jul; (125):. PubMed ID: 28745625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Editing with CRISPR-Cas9: A Budding Biological Contrivance for Colorectal Carcinoma Research and its Perspective in Molecular Medicine.
    Ray SK; Mukherjee S
    Curr Mol Med; 2021; 21(6):462-475. PubMed ID: 33213345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Knockout Gene-Edited Human Intestinal Organoids.
    Rajendra C; Wald T; Barber K; Spence JR; Fattahi F; Klein OD
    Methods Mol Biol; 2020; 2171():215-230. PubMed ID: 32705644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Application of CRISPR-Cas9 based gene editing to study the pathogenesis of colon and liver cancer using organoids.
    Ramakrishna G; Babu PE; Singh R; Trehanpati N
    Hepatol Int; 2021 Dec; 15(6):1309-1317. PubMed ID: 34596864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.