These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 36598862)
1. In Situ Neutron Reflectometry Study of a Tungsten Oxide/Li-Ion Battery Electrolyte Interface. Rus ED; Dura JA ACS Appl Mater Interfaces; 2023 Jan; 15(2):2832-2842. PubMed ID: 36598862 [TBL] [Abstract][Full Text] [Related]
2. In Situ Neutron Reflectometry Study of Solid Electrolyte Interface (SEI) Formation on Tungsten Thin-Film Electrodes. Rus ED; Dura JA ACS Appl Mater Interfaces; 2019 Dec; 11(50):47553-47563. PubMed ID: 31815415 [TBL] [Abstract][Full Text] [Related]
3. In Situ Studies of Solid Electrolyte Interphase (SEI) Formation on Crystalline Carbon Surfaces by Neutron Reflectometry and Atomic Force Microscopy. Steinhauer M; Stich M; Kurniawan M; Seidlhofer BK; Trapp M; Bund A; Wagner N; Friedrich KA ACS Appl Mater Interfaces; 2017 Oct; 9(41):35794-35801. PubMed ID: 28920669 [TBL] [Abstract][Full Text] [Related]
4. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries. Cao C; Shyam B; Wang J; Toney MF; Steinrück HG Acc Chem Res; 2019 Sep; 52(9):2673-2683. PubMed ID: 31479242 [TBL] [Abstract][Full Text] [Related]
5. In situ determination of the liquid/solid interface thickness and composition for the Li ion cathode LiMn(1.5)Ni(0.5)O4. Browning JF; Baggetto L; Jungjohann KL; Wang Y; Tenhaeff WE; Keum JK; Wood DL; Veith GM ACS Appl Mater Interfaces; 2014 Nov; 6(21):18569-76. PubMed ID: 25285852 [TBL] [Abstract][Full Text] [Related]
6. Solid Electrolyte Interphase Layer Formation during Lithiation of Single-Crystal Silicon Electrodes with a Protective Aluminum Oxide Coating. Ronneburg A; Silvi L; Cooper J; Harbauer K; Ballauff M; Risse S ACS Appl Mater Interfaces; 2021 May; 13(18):21241-21249. PubMed ID: 33909399 [TBL] [Abstract][Full Text] [Related]
7. Role of conductive binder to direct solid-electrolyte interphase formation over silicon anodes. Browning KL; Browning JF; Doucet M; Yamada NL; Liu G; Veith GM Phys Chem Chem Phys; 2019 Aug; 21(31):17356-17365. PubMed ID: 31355379 [TBL] [Abstract][Full Text] [Related]
8. Direct, operando observation of the bilayer solid electrolyte interphase structure: Electrolyte reduction on a non-intercalating electrode. Lee CH; Dura JA; LeBar A; DeCaluwe SC J Power Sources; 2019; 412():. PubMed ID: 32831460 [TBL] [Abstract][Full Text] [Related]
9. Computational Exploration of the Li-Electrode|Electrolyte Interface in the Presence of a Nanometer Thick Solid-Electrolyte Interphase Layer. Li Y; Leung K; Qi Y Acc Chem Res; 2016 Oct; 49(10):2363-2370. PubMed ID: 27689438 [TBL] [Abstract][Full Text] [Related]
10. Evaluating the solid electrolyte interphase formed on silicon electrodes: a comparison of ex situ X-ray photoelectron spectroscopy and in situ neutron reflectometry. Fears TM; Doucet M; Browning JF; Baldwin JK; Winiarz JG; Kaiser H; Taub H; Sacci RL; Veith GM Phys Chem Chem Phys; 2016 May; 18(20):13927-40. PubMed ID: 27149427 [TBL] [Abstract][Full Text] [Related]
11. Operando Measurement of Solid Electrolyte Interphase Formation at Working Electrode of Li-Ion Battery by Time-Slicing Neutron Reflectometry. Kawaura H; Harada M; Kondo Y; Kondo H; Suganuma Y; Takahashi N; Sugiyama J; Seno Y; Yamada NL ACS Appl Mater Interfaces; 2016 Apr; 8(15):9540-4. PubMed ID: 27031783 [TBL] [Abstract][Full Text] [Related]
12. Effects of Lithium Bis(oxalate)borate Electrolyte Additive on the Formation of a Solid Electrolyte Interphase on Amorphous Carbon Electrodes by Kawaura H; Harada M; Kondo Y; Mizutani M; Takahashi N; Yamada NL ACS Appl Mater Interfaces; 2022 Jun; 14(21):24526-24535. PubMed ID: 35585036 [TBL] [Abstract][Full Text] [Related]
13. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes. Yu X; Manthiram A Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389 [TBL] [Abstract][Full Text] [Related]
14. Tuning Solid Electrolyte Interphase Layer Properties through the Integration of Conversion Reaction. Lochala J; Taverne T; Wu B; Benamara M; Cai M; Xiao X; Xiao J ACS Appl Mater Interfaces; 2019 Nov; 11(47):44204-44213. PubMed ID: 31692322 [TBL] [Abstract][Full Text] [Related]
15. Dynamic and Reversible Blending Interface on Polyoxovanadate Electrode for High-Performance Lithium-Ion Batteries. Wang J; Yan W; Fu JJ; Wang L; Liu B ACS Appl Mater Interfaces; 2024 Feb; 16(6):8098-8108. PubMed ID: 38290476 [TBL] [Abstract][Full Text] [Related]
17. Real-time mass spectrometric characterization of the solid-electrolyte interphase of a lithium-ion battery. Zhou Y; Su M; Yu X; Zhang Y; Wang JG; Ren X; Cao R; Xu W; Baer DR; Du Y; Borodin O; Wang Y; Wang XL; Xu K; Xu Z; Wang C; Zhu Z Nat Nanotechnol; 2020 Mar; 15(3):224-230. PubMed ID: 31988500 [TBL] [Abstract][Full Text] [Related]
18. Artificial lithium fluoride surface coating on silicon negative electrodes for the inhibition of electrolyte decomposition in lithium-ion batteries: visualization of a solid electrolyte interphase using in situ AFM. Haruta M; Kijima Y; Hioki R; Doi T; Inaba M Nanoscale; 2018 Sep; 10(36):17257-17264. PubMed ID: 30191945 [TBL] [Abstract][Full Text] [Related]
19. Lithium insertion into silicon electrodes studied by cyclic voltammetry and operando neutron reflectometry. Jerliu B; Hüger E; Dörrer L; Seidlhofer BK; Steitz R; Horisberger M; Schmidt H Phys Chem Chem Phys; 2018 Sep; 20(36):23480-23491. PubMed ID: 30183027 [TBL] [Abstract][Full Text] [Related]
20. Neutron reflectometry studies on the lithiation of amorphous silicon electrodes in lithium-ion batteries. Jerliu B; Dörrer L; Hüger E; Borchardt G; Steitz R; Geckle U; Oberst V; Bruns M; Schneider O; Schmidt H Phys Chem Chem Phys; 2013 May; 15(20):7777-84. PubMed ID: 23598350 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]