BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 36598887)

  • 1. Long Non-Coding RNA Detection Based on Multi-Probe-Induced Rolling Circle Amplification for Hepatocellular Carcinoma Early Diagnosis.
    Yao Y; Duan C; Chen Y; Hou Z; Cheng W; Li D; Wang Z; Xiang Y
    Anal Chem; 2023 Jan; 95(2):1549-1555. PubMed ID: 36598887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive strategy based on PtPd nanodendrite/nano-flower-like@GO signal amplification for the detection of long non-coding RNA.
    Liu F; Xiang G; Jiang D; Zhang L; Chen X; Liu L; Luo F; Li Y; Liu C; Pu X
    Biosens Bioelectron; 2015 Dec; 74():214-21. PubMed ID: 26143461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autonomous enzymatic synthesis of functional nucleic acids for sensitive measurement of long noncoding RNA in human lung tissues.
    Han Y; Jiang S; Wang PY; Hu J; Zhang CY
    Talanta; 2024 Jul; 274():126030. PubMed ID: 38574540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J; Li XY; Du YC; Zhang LN; Liu KK; Zhu LN; Kong DM
    Biosens Bioelectron; 2017 May; 91():417-423. PubMed ID: 28063390
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification.
    Yi X; Li L; Peng Y; Guo L
    Biosens Bioelectron; 2014 Jul; 57():103-9. PubMed ID: 24561524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The expression of long non coding RNA genes is associated with expression with polymorphisms of HULC rs7763881 and MALAT1 rs619586 in hepatocellular carcinoma and HBV Egyptian patients.
    Motawi TMK; El-Maraghy SA; Sabry D; Mehana NA
    J Cell Biochem; 2019 Sep; 120(9):14645-14656. PubMed ID: 31009106
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple sealed primers-mediated rolling circle amplification strategy for sensitive and specific detection of DNA methyltransferase activity.
    Xu X; Wang L; Li X; Cui W; Jiang W
    Talanta; 2019 Mar; 194():282-288. PubMed ID: 30609532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors.
    Zhang K; Wang L; Zhao H; Jiang W
    Talanta; 2018 Mar; 179():331-336. PubMed ID: 29310240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rolling circle amplification assisted dual signal amplification colorimetric biosensor for ultrasensitive detection of leukemia-derived exosomes.
    Li C; Zhou M; Wang H; Wang J; Huang L
    Talanta; 2022 Aug; 245():123444. PubMed ID: 35430527
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplexed aptasensing of food contaminants by using terminal deoxynucleotidyl transferase-produced primer-triggered rolling circle amplification: application to the colorimetric determination of enrofloxacin, lead (II), Escherichia coli O157:H7 and tropomyosin.
    Du Y; Zhou Y; Wen Y; Bian X; Xie Y; Zhang W; Liu G; Yan J
    Mikrochim Acta; 2019 Nov; 186(12):840. PubMed ID: 31768650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-primer and self-template recycle rolling circle amplification strategy for sensitive detection of uracil-DNA glycosylase activity.
    Zhang P; Wang L; Zhao H; Xu X; Jiang W
    Anal Chim Acta; 2018 Feb; 1001():119-124. PubMed ID: 29291794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z; Wu C; Lv S; Wang C; Zhang N; Xiao S; Han Y; Xu H; Zhang Y; Li F; Lyu J; Shen Z
    Anal Bioanal Chem; 2018 Oct; 410(26):6819-6826. PubMed ID: 30066196
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A.
    Wang J; Wang Y; Liu S; Wang H; Zhang X; Song X; Yu J; Huang J
    Analyst; 2019 May; 144(10):3389-3397. PubMed ID: 30990481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free and highly sensitive APE1 detection based on rolling circle amplification combined with G-quadruplex.
    Liu B; Yang Z; Huang T; Li MM; Duan W; Xie B; Chen JX; Dai Z; Chen J
    Talanta; 2022 Jul; 244():123404. PubMed ID: 35349840
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitive isothermal detection of nucleic-acid sequence by primer generation-rolling circle amplification.
    Murakami T; Sumaoka J; Komiyama M
    Nucleic Acids Res; 2009 Feb; 37(3):e19. PubMed ID: 19106144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances in rolling circle amplification-based biosensing strategies-A review.
    Xu L; Duan J; Chen J; Ding S; Cheng W
    Anal Chim Acta; 2021 Mar; 1148():238187. PubMed ID: 33516384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q; Lv Y; Cui H; Gu X; Zhang S; Liu J
    Anal Chim Acta; 2015 Jan; 856():103-9. PubMed ID: 25542364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optomagnetic Detection of Rolling Circle Amplification Products.
    Minero GAS; Cangiano V; Fock J; Garbarino F; Hansen MF
    Methods Mol Biol; 2020; 2063():3-15. PubMed ID: 31667758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Isothermal Nucleic Acid Signal Amplification in the Detection of Hepatocellular Carcinoma-Associated MicroRNA.
    Mao D; Chen H; Tang Y; Li J; Cao Y; Zhao J
    Chempluschem; 2019 Jan; 84(1):8-17. PubMed ID: 31950739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Palindromic hyperbranched rolling circle amplification enabling ultrasensitive microRNA detection.
    Song J; Ju Y; Kim S; Kim H; Park HG
    Chem Commun (Camb); 2022 Jun; 58(45):6518-6521. PubMed ID: 35575999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.