These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 36599223)

  • 1. Real-time simulation of viscoelastic tissue behavior with physics-guided deep learning.
    Karami M; Lombaert H; Rivest-Hénault D
    Comput Med Imaging Graph; 2023 Mar; 104():102165. PubMed ID: 36599223
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of hyperelastic materials in real-time using deep learning.
    Mendizabal A; Márquez-Neila P; Cotin S
    Med Image Anal; 2020 Jan; 59():101569. PubMed ID: 31704451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Physics-Guided Deep Learning for Drag Force Prediction in Dense Fluid-Particulate Systems.
    Muralidhar N; Bu J; Cao Z; He L; Ramakrishnan N; Tafti D; Karpatne A
    Big Data; 2020 Oct; 8(5):431-449. PubMed ID: 33090021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fast soft-tissue deformations coupled with mixed reality toward the next-generation childbirth training simulator.
    Ballit A; Hivert M; Rubod C; Dao TT
    Med Biol Eng Comput; 2023 Aug; 61(8):2207-2226. PubMed ID: 37382859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics-constrained deep active learning for spatiotemporal modeling of cardiac electrodynamics.
    Xie J; Yao B
    Comput Biol Med; 2022 Jul; 146():105586. PubMed ID: 35751197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanical modelling and computer aided simulation of deep brain retraction in neurosurgery.
    Awasthi A; Gautam U; Bhaskar S; Roy S
    Comput Methods Programs Biomed; 2020 Dec; 197():105688. PubMed ID: 32861182
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time biomechanics using the finite element method and machine learning: Review and perspective.
    Phellan R; Hachem B; Clin J; Mac-Thiong JM; Duong L
    Med Phys; 2021 Jan; 48(1):7-18. PubMed ID: 33222226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recurrent neural network to predict hyperelastic constitutive behaviors of the skeletal muscle.
    Ballit A; Dao TT
    Med Biol Eng Comput; 2022 Apr; 60(4):1177-1185. PubMed ID: 35244859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparing a simplified FEM approach with the mass-spring model for surgery simulation.
    Harders M; Hutter R; Rutz A; Niederer P; Székely G
    Stud Health Technol Inform; 2003; 94():103-9. PubMed ID: 15455873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physics-informed deep learning for prediction of CO
    Shokouhi P; Kumar V; Prathipati S; Hosseini SA; Giles CL; Kifer D
    J Contam Hydrol; 2021 Aug; 241():103835. PubMed ID: 34091408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Milling Surface Roughness Prediction Based on Physics-Informed Machine Learning.
    Zeng S; Pi D
    Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep learning for biomechanical modeling of facial tissue deformation in orthognathic surgical planning.
    Lampen N; Kim D; Fang X; Xu X; Kuang T; Deng HH; Barber JC; Gateno J; Xia J; Yan P
    Int J Comput Assist Radiol Surg; 2022 May; 17(5):945-952. PubMed ID: 35362849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery.
    Tonutti M; Gras G; Yang GZ
    Artif Intell Med; 2017 Jul; 80():39-47. PubMed ID: 28750949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural Network Approaches for Soft Biological Tissue and Organ Simulations.
    Sacks MS; Motiwale S; Goodbrake C; Zhang W
    J Biomech Eng; 2022 Dec; 144(12):. PubMed ID: 36193891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physics-driven learning of x-ray skin dose distribution in interventional procedures.
    Roser P; Zhong X; Birkhold A; Strobel N; Kowarschik M; Fahrig R; Maier A
    Med Phys; 2019 Oct; 46(10):4654-4665. PubMed ID: 31407346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraint-based soft tissue simulation for virtual surgical training.
    Tang W; Wan TR
    IEEE Trans Biomed Eng; 2014 Nov; 61(11):2698-706. PubMed ID: 24876107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermal fluid fields reconstruction for nanofluids convection based on physics-informed deep learning.
    Li Y; Liu T; Xie Y
    Sci Rep; 2022 Jul; 12(1):12567. PubMed ID: 35869129
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-fidelity information fusion with concatenated neural networks.
    Pawar S; San O; Vedula P; Rasheed A; Kvamsdal T
    Sci Rep; 2022 Apr; 12(1):5900. PubMed ID: 35393511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.