These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein (snRNP) activates hexamethylene bisacetamide-inducible protein (HEXIM1) transcription. Liu P; Xiang Y; Fujinaga K; Bartholomeeusen K; Nilson KA; Price DH; Peterlin BM J Biol Chem; 2014 Apr; 289(14):9918-25. PubMed ID: 24515107 [TBL] [Abstract][Full Text] [Related]
3. T-loop phosphorylated Cdk9 localizes to nuclear speckle domains which may serve as sites of active P-TEFb function and exchange between the Brd4 and 7SK/HEXIM1 regulatory complexes. Dow EC; Liu H; Rice AP J Cell Physiol; 2010 Jul; 224(1):84-93. PubMed ID: 20201073 [TBL] [Abstract][Full Text] [Related]
4. Two-pronged binding with bromodomain-containing protein 4 liberates positive transcription elongation factor b from inactive ribonucleoprotein complexes. Schröder S; Cho S; Zeng L; Zhang Q; Kaehlcke K; Mak L; Lau J; Bisgrove D; Schnölzer M; Verdin E; Zhou MM; Ott M J Biol Chem; 2012 Jan; 287(2):1090-9. PubMed ID: 22084242 [TBL] [Abstract][Full Text] [Related]
5. Binding of the 7SK snRNA turns the HEXIM1 protein into a P-TEFb (CDK9/cyclin T) inhibitor. Michels AA; Fraldi A; Li Q; Adamson TE; Bonnet F; Nguyen VT; Sedore SC; Price JP; Price DH; Lania L; Bensaude O EMBO J; 2004 Jul; 23(13):2608-19. PubMed ID: 15201869 [TBL] [Abstract][Full Text] [Related]
6. Bromodomain and extra-terminal (BET) bromodomain inhibition activate transcription via transient release of positive transcription elongation factor b (P-TEFb) from 7SK small nuclear ribonucleoprotein. Bartholomeeusen K; Xiang Y; Fujinaga K; Peterlin BM J Biol Chem; 2012 Oct; 287(43):36609-16. PubMed ID: 22952229 [TBL] [Abstract][Full Text] [Related]
7. Human T-lymphotropic virus type 1 Tax protein complexes with P-TEFb and competes for Brd4 and 7SK snRNP/HEXIM1 binding. Cho WK; Jang MK; Huang K; Pise-Masison CA; Brady JN J Virol; 2010 Dec; 84(24):12801-9. PubMed ID: 20926576 [TBL] [Abstract][Full Text] [Related]
8. Phosphorylated positive transcription elongation factor b (P-TEFb) is tagged for inhibition through association with 7SK snRNA. Chen R; Yang Z; Zhou Q J Biol Chem; 2004 Feb; 279(6):4153-60. PubMed ID: 14627702 [TBL] [Abstract][Full Text] [Related]
9. Inhibition of P-TEFb (CDK9/Cyclin T) kinase and RNA polymerase II transcription by the coordinated actions of HEXIM1 and 7SK snRNA. Yik JH; Chen R; Nishimura R; Jennings JL; Link AJ; Zhou Q Mol Cell; 2003 Oct; 12(4):971-82. PubMed ID: 14580347 [TBL] [Abstract][Full Text] [Related]
10. Regulation of polymerase II transcription by 7SK snRNA: two distinct RNA elements direct P-TEFb and HEXIM1 binding. Egloff S; Van Herreweghe E; Kiss T Mol Cell Biol; 2006 Jan; 26(2):630-42. PubMed ID: 16382153 [TBL] [Abstract][Full Text] [Related]
11. Polo-like kinase 1 inhibits the activity of positive transcription elongation factor of RNA Pol II b (P-TEFb). Jiang L; Huang Y; Deng M; Liu T; Lai W; Ye X PLoS One; 2013; 8(8):e72289. PubMed ID: 23977272 [TBL] [Abstract][Full Text] [Related]
13. Genetic analysis of the structure and function of 7SK small nuclear ribonucleoprotein (snRNP) in cells. Fujinaga K; Luo Z; Peterlin BM J Biol Chem; 2014 Jul; 289(30):21181-90. PubMed ID: 24917669 [TBL] [Abstract][Full Text] [Related]
14. The positive transcription elongation factor b is an essential cofactor for the activation of transcription by myocyte enhancer factor 2. Nojima M; Huang Y; Tyagi M; Kao HY; Fujinaga K J Mol Biol; 2008 Oct; 382(2):275-87. PubMed ID: 18662700 [TBL] [Abstract][Full Text] [Related]
15. MAQ1 and 7SK RNA interact with CDK9/cyclin T complexes in a transcription-dependent manner. Michels AA; Nguyen VT; Fraldi A; Labas V; Edwards M; Bonnet F; Lania L; Bensaude O Mol Cell Biol; 2003 Jul; 23(14):4859-69. PubMed ID: 12832472 [TBL] [Abstract][Full Text] [Related]
16. Disrupting the Cdk9/Cyclin T1 heterodimer of 7SK snRNP for the Brd4 and AFF1/4 guided reconstitution of active P-TEFb. Zhou K; Zhuang S; Liu F; Chen Y; Li Y; Wang S; Li Y; Wen H; Lin X; Wang J; Huang Y; He C; Xu N; Li Z; Xu L; Zhang Z; Chen LF; Chen R; Liu M Nucleic Acids Res; 2022 Jan; 50(2):750-762. PubMed ID: 34935961 [TBL] [Abstract][Full Text] [Related]
17. Phosphorylation of CDK9 at Ser175 enhances HIV transcription and is a marker of activated P-TEFb in CD4(+) T lymphocytes. Mbonye UR; Gokulrangan G; Datt M; Dobrowolski C; Cooper M; Chance MR; Karn J PLoS Pathog; 2013; 9(5):e1003338. PubMed ID: 23658523 [TBL] [Abstract][Full Text] [Related]
18. CYCLINg through transcription: posttranslational modifications of P-TEFb regulate transcription elongation. Cho S; Schroeder S; Ott M Cell Cycle; 2010 May; 9(9):1697-705. PubMed ID: 20436276 [TBL] [Abstract][Full Text] [Related]
19. The 7SK/P-TEFb snRNP controls ultraviolet radiation-induced transcriptional reprogramming. Studniarek C; Tellier M; Martin PGP; Murphy S; Kiss T; Egloff S Cell Rep; 2021 Apr; 35(2):108965. PubMed ID: 33852864 [TBL] [Abstract][Full Text] [Related]
20. Tat competes with HEXIM1 to increase the active pool of P-TEFb for HIV-1 transcription. Barboric M; Yik JH; Czudnochowski N; Yang Z; Chen R; Contreras X; Geyer M; Matija Peterlin B; Zhou Q Nucleic Acids Res; 2007; 35(6):2003-12. PubMed ID: 17341462 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]