These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
265 related articles for article (PubMed ID: 36599353)
41. A human immunodeficiency virus type 1 Tat-like arginine-rich RNA-binding domain is essential for HEXIM1 to inhibit RNA polymerase II transcription through 7SK snRNA-mediated inactivation of P-TEFb. Yik JH; Chen R; Pezda AC; Samford CS; Zhou Q Mol Cell Biol; 2004 Jun; 24(12):5094-105. PubMed ID: 15169877 [TBL] [Abstract][Full Text] [Related]
42. Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4+ T cells. Sung TL; Rice AP Retrovirology; 2006 Oct; 3():66. PubMed ID: 17014716 [TBL] [Abstract][Full Text] [Related]
43. Positive transcription elongation factor b activity in compensatory myocardial hypertrophy is regulated by cardiac lineage protein-1. Espinoza-Derout J; Wagner M; Salciccioli L; Lazar JM; Bhaduri S; Mascareno E; Chaqour B; Siddiqui MA Circ Res; 2009 Jun; 104(12):1347-54. PubMed ID: 19443839 [TBL] [Abstract][Full Text] [Related]
44. Identification of a cyclin T-binding domain in Hexim1 and biochemical analysis of its binding competition with HIV-1 Tat. Schulte A; Czudnochowski N; Barboric M; Schönichen A; Blazek D; Peterlin BM; Geyer M J Biol Chem; 2005 Jul; 280(26):24968-77. PubMed ID: 15855166 [TBL] [Abstract][Full Text] [Related]
45. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Yang Z; Yik JH; Chen R; He N; Jang MK; Ozato K; Zhou Q Mol Cell; 2005 Aug; 19(4):535-45. PubMed ID: 16109377 [TBL] [Abstract][Full Text] [Related]
46. Compensatory contributions of HEXIM1 and HEXIM2 in maintaining the balance of active and inactive positive transcription elongation factor b complexes for control of transcription. Yik JH; Chen R; Pezda AC; Zhou Q J Biol Chem; 2005 Apr; 280(16):16368-76. PubMed ID: 15713661 [TBL] [Abstract][Full Text] [Related]
47. AFF1 is a ubiquitous P-TEFb partner to enable Tat extraction of P-TEFb from 7SK snRNP and formation of SECs for HIV transactivation. Lu H; Li Z; Xue Y; Schulze-Gahmen U; Johnson JR; Krogan NJ; Alber T; Zhou Q Proc Natl Acad Sci U S A; 2014 Jan; 111(1):E15-24. PubMed ID: 24367103 [TBL] [Abstract][Full Text] [Related]
48. HEXIM1 induces differentiation of human pluripotent stem cells. Ding V; Lew QJ; Chu KL; Natarajan S; Rajasegaran V; Gurumurthy M; Choo AB; Chao SH PLoS One; 2013; 8(8):e72823. PubMed ID: 23977357 [TBL] [Abstract][Full Text] [Related]
49. The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Yang Z; Zhu Q; Luo K; Zhou Q Nature; 2001 Nov; 414(6861):317-22. PubMed ID: 11713532 [TBL] [Abstract][Full Text] [Related]
50. A Cyclin T1 point mutation that abolishes positive transcription elongation factor (P-TEFb) binding to Hexim1 and HIV tat. Verstraete N; Kuzmina A; Diribarne G; Nguyen VT; Kobbi L; Ludanyi M; Taube R; Bensaude O Retrovirology; 2014 Jul; 11():50. PubMed ID: 24985203 [TBL] [Abstract][Full Text] [Related]
51. CDK9 keeps RNA polymerase II on track. Egloff S Cell Mol Life Sci; 2021 Jul; 78(14):5543-5567. PubMed ID: 34146121 [TBL] [Abstract][Full Text] [Related]
52. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. Paparidis NF; Durvale MC; Canduri F Mol Biosyst; 2017 Jan; 13(2):246-276. PubMed ID: 27833949 [TBL] [Abstract][Full Text] [Related]
53. The La-related protein LARP7 is a component of the 7SK ribonucleoprotein and affects transcription of cellular and viral polymerase II genes. Markert A; Grimm M; Martinez J; Wiesner J; Meyerhans A; Meyuhas O; Sickmann A; Fischer U EMBO Rep; 2008 Jun; 9(6):569-75. PubMed ID: 18483487 [TBL] [Abstract][Full Text] [Related]
54. Analysis of the large inactive P-TEFb complex indicates that it contains one 7SK molecule, a dimer of HEXIM1 or HEXIM2, and two P-TEFb molecules containing Cdk9 phosphorylated at threonine 186. Li Q; Price JP; Byers SA; Cheng D; Peng J; Price DH J Biol Chem; 2005 Aug; 280(31):28819-26. PubMed ID: 15965233 [TBL] [Abstract][Full Text] [Related]
56. The transcription-dependent dissociation of P-TEFb-HEXIM1-7SK RNA relies upon formation of hnRNP-7SK RNA complexes. Barrandon C; Bonnet F; Nguyen VT; Labas V; Bensaude O Mol Cell Biol; 2007 Oct; 27(20):6996-7006. PubMed ID: 17709395 [TBL] [Abstract][Full Text] [Related]
57. Bromodomain protein Brd4 regulates human immunodeficiency virus transcription through phosphorylation of CDK9 at threonine 29. Zhou M; Huang K; Jung KJ; Cho WK; Klase Z; Kashanchi F; Pise-Masison CA; Brady JN J Virol; 2009 Jan; 83(2):1036-44. PubMed ID: 18971272 [TBL] [Abstract][Full Text] [Related]
58. A positive feedback loop links opposing functions of P-TEFb/Cdk9 and histone H2B ubiquitylation to regulate transcript elongation in fission yeast. Sansó M; Lee KM; Viladevall L; Jacques PÉ; Pagé V; Nagy S; Racine A; St Amour CV; Zhang C; Shokat KM; Schwer B; Robert F; Fisher RP; Tanny JC PLoS Genet; 2012; 8(8):e1002822. PubMed ID: 22876190 [TBL] [Abstract][Full Text] [Related]
59. P-TEFb is a crucial co-factor for Myc transactivation. Gargano B; Amente S; Majello B; Lania L Cell Cycle; 2007 Aug; 6(16):2031-7. PubMed ID: 17700062 [TBL] [Abstract][Full Text] [Related]
60. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig. Oqani RK; Lin T; Lee JE; Choi KM; Shin HY; Jin DI PLoS One; 2016; 11(3):e0152254. PubMed ID: 27011207 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]