These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 36599837)
21. A simple method for the reconstitution of membrane proteins into giant unilamellar vesicles. Varnier A; Kermarrec F; Blesneac I; Moreau C; Liguori L; Lenormand JL; Picollet-D'hahan N J Membr Biol; 2010 Feb; 233(1-3):85-92. PubMed ID: 20135103 [TBL] [Abstract][Full Text] [Related]
22. Entry of microparticles into giant lipid vesicles by optical tweezers. Fessler F; Sharma V; Muller P; Stocco A Phys Rev E; 2023 May; 107(5):L052601. PubMed ID: 37328973 [TBL] [Abstract][Full Text] [Related]
23. Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution. Monzel C; Schmidt D; Seifert U; Smith AS; Merkel R; Sengupta K Soft Matter; 2016 May; 12(21):4755-68. PubMed ID: 27142463 [TBL] [Abstract][Full Text] [Related]
24. Membrane poration, wrinkling, and compression: deformations of lipid vesicles induced by amphiphilic Janus nanoparticles. Wiemann JT; Shen Z; Ye H; Li Y; Yu Y Nanoscale; 2020 Oct; 12(39):20326-20336. PubMed ID: 33006360 [TBL] [Abstract][Full Text] [Related]
25. Fluorescence correlation spectroscopy for the study of membrane dynamics and organization in giant unilamellar vesicles. García-Sáez AJ; Carrer DC; Schwille P Methods Mol Biol; 2010; 606():493-508. PubMed ID: 20013417 [TBL] [Abstract][Full Text] [Related]
26. Point-to-Plane Nonhomogeneous Electric-Field-Induced Simultaneous Formation of Giant Unilamellar Vesicles (GUVs) and Lipid Tubes. Zhu C; Zhang Y; Wang Y; Li Q; Mu W; Han X Chemistry; 2016 Feb; 22(9):2906-9. PubMed ID: 26756162 [TBL] [Abstract][Full Text] [Related]
27. The use of giant unilamellar vesicles to study functional properties of pore-forming toxins. Aden S; Snoj T; Anderluh G Methods Enzymol; 2021; 649():219-251. PubMed ID: 33712188 [TBL] [Abstract][Full Text] [Related]
28. Septin-based readout of PI(4,5)P2 incorporation into membranes of giant unilamellar vesicles. Beber A; Alqabandi M; Prévost C; Viars F; Lévy D; Bassereau P; Bertin A; Mangenot S Cytoskeleton (Hoboken); 2019 Jan; 76(1):92-103. PubMed ID: 30070077 [TBL] [Abstract][Full Text] [Related]
29. Kinetics of irreversible pore formation under constant electrical tension in giant unilamellar vesicles. Ahamed MK; Karal MAS; Ahmed M; Ahammed S Eur Biophys J; 2020 Jul; 49(5):371-381. PubMed ID: 32494845 [TBL] [Abstract][Full Text] [Related]
30. Extrusion of electroformed giant unilamellar vesicles through track-etched membranes. Patil YP; Kumbhalkar MD; Jadhav S Chem Phys Lipids; 2012 May; 165(4):475-81. PubMed ID: 22155692 [TBL] [Abstract][Full Text] [Related]
31. Electroformation of giant unilamellar vesicles from erythrocyte membranes under low-salt conditions. Mikelj M; Praper T; Demič R; Hodnik V; Turk T; Anderluh G Anal Biochem; 2013 Apr; 435(2):174-80. PubMed ID: 23333270 [TBL] [Abstract][Full Text] [Related]
32. Preparing giant unilamellar vesicles (GUVs) of complex lipid mixtures on demand: Mixing small unilamellar vesicles of compositionally heterogeneous mixtures. Bhatia T; Husen P; Brewer J; Bagatolli LA; Hansen PL; Ipsen JH; Mouritsen OG Biochim Biophys Acta; 2015 Dec; 1848(12):3175-80. PubMed ID: 26417657 [TBL] [Abstract][Full Text] [Related]
33. Role of Membrane Potential on Entry of Cell-Penetrating Peptide Transportan 10 into Single Vesicles. Moghal MMR; Islam MZ; Hossain F; Saha SK; Yamazaki M Biophys J; 2020 Jan; 118(1):57-69. PubMed ID: 31810658 [TBL] [Abstract][Full Text] [Related]
34. Sizing of giant unilamellar vesicles using a metal mesh with a high opening ratio. Shinohara K; Okita T; Tsugane M; Kondo T; Suzuki H Chem Phys Lipids; 2021 Nov; 241():105148. PubMed ID: 34600914 [TBL] [Abstract][Full Text] [Related]
35. On-chip generation of monodisperse giant unilamellar lipid vesicles containing quantum dots. Park YH; Lee DH; Um E; Park JK Electrophoresis; 2016 May; 37(10):1353-8. PubMed ID: 26920999 [TBL] [Abstract][Full Text] [Related]
36. Elementary Processes and Mechanisms of Interactions of Antimicrobial Peptides with Membranes-Single Giant Unilamellar Vesicle Studies. Hasan M; Yamazaki M Adv Exp Med Biol; 2019; 1117():17-32. PubMed ID: 30980351 [TBL] [Abstract][Full Text] [Related]
38. Electroformation of giant unilamellar vesicles from native membranes and organic lipid mixtures for the study of lipid domains under physiological ionic-strength conditions. Montes LR; Ahyayauch H; Ibarguren M; Sot J; Alonso A; Bagatolli LA; Goñi FM Methods Mol Biol; 2010; 606():105-14. PubMed ID: 20013393 [TBL] [Abstract][Full Text] [Related]
39. Membrane Tension in Negatively Charged Lipid Bilayers in a Buffer under Osmotic Pressure. Saha SK; Alam Shibly SU; Yamazaki M J Phys Chem B; 2020 Jul; 124(27):5588-5599. PubMed ID: 32543195 [TBL] [Abstract][Full Text] [Related]
40. Translocation of cationic amphipathic peptides across the membranes of pure phospholipid giant vesicles. Wheaten SA; Ablan FD; Spaller BL; Trieu JM; Almeida PF J Am Chem Soc; 2013 Nov; 135(44):16517-25. PubMed ID: 24152283 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]