These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 36600063)

  • 1. Extreme redox variations in a superdeep diamond from a subducted slab.
    Nestola F; Regier ME; Luth RW; Pearson DG; Stachel T; McCammon C; Wenz MD; Jacobsen SD; Anzolini C; Bindi L; Harris JW
    Nature; 2023 Jan; 613(7942):85-89. PubMed ID: 36600063
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds.
    Regier ME; Pearson DG; Stachel T; Luth RW; Stern RA; Harris JW
    Nature; 2020 Sep; 585(7824):234-238. PubMed ID: 32908266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere.
    Green HW; Chen WP; Brudzinski MR
    Nature; 2010 Oct; 467(7317):828-31. PubMed ID: 20927105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cubic Fe-bearing majorite synthesized at 18-25 GPa and 1000 °C: implications for element transport, subducted slab rheology and diamond formation.
    Stagno V; Bindi L; Bonechi B; Greaux S; Aulbach S; Irifune T; Lupi S; Marras G; McCammon CA; Nazzari M; Piccirilli F; Poe B; Romano C; Scarlato P
    Sci Rep; 2023 Sep; 13(1):15855. PubMed ID: 37740075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Depressed 660-km discontinuity caused by akimotoite-bridgmanite transition.
    Chanyshev A; Ishii T; Bondar D; Bhat S; Kim EJ; Farla R; Nishida K; Liu Z; Wang L; Nakajima A; Yan B; Tang H; Chen Z; Higo Y; Tange Y; Katsura T
    Nature; 2022 Jan; 601(7891):69-73. PubMed ID: 34987213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evidence for complex iron oxides in the deep mantle from FeNi(Cu) inclusions in superdeep diamond.
    Anzolini C; Marquardt K; Stagno V; Bindi L; Frost DJ; Pearson DG; Harris JW; Hemley RJ; Nestola F
    Proc Natl Acad Sci U S A; 2020 Sep; 117(35):21088-21094. PubMed ID: 32817475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superhydrous aluminous silica phases as major water hosts in high-temperature lower mantle.
    Ishii T; Criniti G; Ohtani E; Purevjav N; Fei H; Katsura T; Mao HK
    Proc Natl Acad Sci U S A; 2022 Nov; 119(44):e2211243119. PubMed ID: 36279458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molybdenum systematics of subducted crust record reactive fluid flow from underlying slab serpentine dehydration.
    Chen S; Hin RC; John T; Brooker R; Bryan B; Niu Y; Elliott T
    Nat Commun; 2019 Oct; 10(1):4773. PubMed ID: 31636258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Weak cubic CaSiO
    Immoor J; Miyagi L; Liermann HP; Speziale S; Schulze K; Buchen J; Kurnosov A; Marquardt H
    Nature; 2022 Mar; 603(7900):276-279. PubMed ID: 35264761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrous mantle transition zone indicated by ringwoodite included within diamond.
    Pearson DG; Brenker FE; Nestola F; McNeill J; Nasdala L; Hutchison MT; Matveev S; Mather K; Silversmit G; Schmitz S; Vekemans B; Vincze L
    Nature; 2014 Mar; 507(7491):221-4. PubMed ID: 24622201
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracing the subducting Pacific slab to the mantle transition zone with hydrogen isotopes.
    Kuritani T; Shimizu K; Ushikubo T; Xia QK; Liu J; Nakagawa M; Taniuchi H; Sato E; Doi N
    Sci Rep; 2021 Sep; 11(1):18755. PubMed ID: 34548585
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle.
    Chang YY; Hsieh WP; Tan E; Chen J
    Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4078-4081. PubMed ID: 28377520
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly oxidising fluids generated during serpentinite breakdown in subduction zones.
    Debret B; Sverjensky DA
    Sci Rep; 2017 Sep; 7(1):10351. PubMed ID: 28871200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Earth's interior. Dehydration melting at the top of the lower mantle.
    Schmandt B; Jacobsen SD; Becker TW; Liu Z; Dueker KG
    Science; 2014 Jun; 344(6189):1265-8. PubMed ID: 24926016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Slab melting as a barrier to deep carbon subduction.
    Thomson AR; Walter MJ; Kohn SC; Brooker RA
    Nature; 2016 Jan; 529(7584):76-9. PubMed ID: 26738593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of supercritical slab-fluids to form aqueous fluid and melt components in subduction zone magmatism.
    Kawamoto T; Kanzaki M; Mibe K; Matsukage KN; Ono S
    Proc Natl Acad Sci U S A; 2012 Nov; 109(46):18695-700. PubMed ID: 23112158
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure stabilizes ferrous iron in bridgmanite under hydrous deep lower mantle conditions.
    Zhang L; Chen Y; Yang Z; Liu L; Yang Y; Dalladay-Simpson P; Wang J; Mao HK
    Nat Commun; 2024 May; 15(1):4333. PubMed ID: 38773099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Carbonates and intermediate-depth seismicity: Stable and unstable shear in altered subducting plates and overlying mantle.
    Prakash A; Holyoke CW; Kelemen PB; Kirby SH; Kronenberg AK; Lamb WM
    Proc Natl Acad Sci U S A; 2023 May; 120(21):e2219076120. PubMed ID: 37186835
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water input into the Mariana subduction zone estimated from ocean-bottom seismic data.
    Cai C; Wiens DA; Shen W; Eimer M
    Nature; 2018 Nov; 563(7731):389-392. PubMed ID: 30429549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slab temperature controls on the Tonga double seismic zone and slab mantle dehydration.
    Wei SS; Wiens DA; van Keken PE; Cai C
    Sci Adv; 2017 Jan; 3(1):e1601755. PubMed ID: 28097220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.