These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 36600066)

  • 21. Surface plasmon resonance enhanced direct Z-scheme TiO
    Zhang W; Hu Y; Yan C; Hong D; Chen R; Xue X; Yang S; Tian Y; Tie Z; Jin Z
    Nanoscale; 2019 May; 11(18):9053-9060. PubMed ID: 31025687
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Water splitting. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway.
    Liu J; Liu Y; Liu N; Han Y; Zhang X; Huang H; Lifshitz Y; Lee ST; Zhong J; Kang Z
    Science; 2015 Feb; 347(6225):970-4. PubMed ID: 25722405
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30.
    Jia J; Seitz LC; Benck JD; Huo Y; Chen Y; Ng JW; Bilir T; Harris JS; Jaramillo TF
    Nat Commun; 2016 Oct; 7():13237. PubMed ID: 27796309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hybrid bio-photo-electro-chemical cells for solar water splitting.
    Pinhassi RI; Kallmann D; Saper G; Dotan H; Linkov A; Kay A; Liveanu V; Schuster G; Adir N; Rothschild A
    Nat Commun; 2016 Aug; 7():12552. PubMed ID: 27550091
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ZnGeSe
    Nan G; Zhang W; Yan X; Qin X; Wu S; Tang R; Tang MX; Hu L; Liu L; Wang S; Feng Y; Yi W
    Phys Chem Chem Phys; 2023 Sep; 25(36):24594-24602. PubMed ID: 37664888
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic Electric Fields in Two-dimensional Materials Boost the Solar-to-Hydrogen Efficiency for Photocatalytic Water Splitting.
    Fu CF; Sun J; Luo Q; Li X; Hu W; Yang J
    Nano Lett; 2018 Oct; 18(10):6312-6317. PubMed ID: 30238753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toward practical solar hydrogen production - an artificial photosynthetic leaf-to-farm challenge.
    Kim JH; Hansora D; Sharma P; Jang JW; Lee JS
    Chem Soc Rev; 2019 Apr; 48(7):1908-1971. PubMed ID: 30855624
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Hydrogen Farm Strategy for Scalable Solar Hydrogen Production with Particulate Photocatalysts.
    Zhao Y; Ding C; Zhu J; Qin W; Tao X; Fan F; Li R; Li C
    Angew Chem Int Ed Engl; 2020 Jun; 59(24):9653-9658. PubMed ID: 32181560
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Stable Integrated Photoelectrochemical Reactor for H
    Khan MA; Al-Shankiti I; Ziani A; Wehbe N; Idriss H
    Angew Chem Int Ed Engl; 2020 Aug; 59(35):14802-14808. PubMed ID: 32449822
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Visible light water splitting using dye-sensitized oxide semiconductors.
    Youngblood WJ; Lee SH; Maeda K; Mallouk TE
    Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmon-Enhanced Solar Water Splitting on Metal-Semiconductor Photocatalysts.
    Zheng Z; Xie W; Huang B; Dai Y
    Chemistry; 2018 Dec; 24(69):18322-18333. PubMed ID: 30183119
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Materials Advances in Photocatalytic Solar Hydrogen Production: Integrating Systems and Economics for a Sustainable Future.
    Gunawan D; Zhang J; Li Q; Toe CY; Scott J; Antonietti M; Guo J; Amal R
    Adv Mater; 2024 Jun; ():e2404618. PubMed ID: 38853427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting.
    Hisatomi T; Kubota J; Domen K
    Chem Soc Rev; 2014 Nov; 43(22):7520-35. PubMed ID: 24413305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Revisiting the Limiting Factors for Overall Water-Splitting on Organic Photocatalysts.
    Rahman M; Tian H; Edvinsson T
    Angew Chem Int Ed Engl; 2020 Sep; 59(38):16278-16293. PubMed ID: 32329950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Integrated Coupling Utilization of the Solar Full Spectrum for Promoting Water Splitting Activity over a CIZS Semiconductor.
    Ding L; Li K; Li J; Lu Q; Fang F; Wang T; Chang K
    ACS Nano; 2023 Jun; 17(12):11616-11625. PubMed ID: 37317581
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Photoelectrochemical water splitting by hybrid organic-inorganic systems: setting the path from 2% to 20% solar-to-hydrogen conversion efficiency.
    Alfano A; Mezzetti A; Fumagalli F; Tao C; Rovera E; Petrozza A; Di Fonzo F
    iScience; 2021 May; 24(5):102463. PubMed ID: 34027321
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photocatalytic Hydrogen Evolution from Artificial Seawater Splitting over Amorphous Carbon Nitride: Optimization and Process Parameters Study via Response Surface Modeling.
    Chee MKT; Ng BJ; Chew YH; Chang WS; Chai SP
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous graphitic carbon nitride synthesized via direct polymerization of urea for efficient sunlight-driven photocatalytic hydrogen production.
    Zhang Y; Liu J; Wu G; Chen W
    Nanoscale; 2012 Sep; 4(17):5300-3. PubMed ID: 22776858
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Heterostructured WS
    Reddy DA; Park H; Ma R; Kumar DP; Lim M; Kim TK
    ChemSusChem; 2017 Apr; 10(7):1563-1570. PubMed ID: 28121391
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.