These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36600563)

  • 1. Microstructured Optical Fiber-Enhanced Light-Matter Interaction Enables Highly Sensitive Exosome-Based Liquid Biopsy of Breast Cancer.
    Liu Z; Zhang W; Zhang X; Wang S; Xia Z; Guo X; Zhao Y; Wang P; Wang XH
    Anal Chem; 2023 Jan; 95(2):1095-1105. PubMed ID: 36600563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Giant Enhancement of Raman Scattering by a Hollow-Core Microstructured Optical Fiber Allows Single Exosome Probing.
    Xia Z; Zhang X; Yao J; Liu Z; Jin Y; Yin H; Wang P; Wang XH
    ACS Sens; 2023 Apr; 8(4):1799-1809. PubMed ID: 37018734
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A light-up fluorescence resonance energy transfer magnetic aptamer-sensor for ultra-sensitive lung cancer exosome detection.
    Zhu N; Li G; Zhou J; Zhang Y; Kang K; Ying B; Yi Q; Wu Y
    J Mater Chem B; 2021 Mar; 9(10):2483-2493. PubMed ID: 33656037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface plasmon resonance biosensor using hydrogel-AuNP supramolecular spheres for determination of prostate cancer-derived exosomes.
    Chen W; Li J; Wei X; Fan Y; Qian H; Li S; Xiang Y; Ding S
    Mikrochim Acta; 2020 Oct; 187(11):590. PubMed ID: 33025277
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface plasmon resonance biosensor for exosome detection based on reformative tyramine signal amplification activated by molecular aptamer beacon.
    Chen W; Li Z; Cheng W; Wu T; Li J; Li X; Liu L; Bai H; Ding S; Li X; Yu X
    J Nanobiotechnology; 2021 Dec; 19(1):450. PubMed ID: 34952586
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SERS Platform Based on Hollow-Core Microstructured Optical Fiber: Technology of UV-Mediated Gold Nanoparticle Growth.
    Merdalimova AA; Rudakovskaya PG; Ermatov TI; Smirnov AS; Kosolobov SS; Skibina JS; Demina PA; Khlebtsov BN; Yashchenok AM; Gorin DA
    Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Situ Formation of Gold Nanoparticles Decorated Ti
    Zhang H; Wang Z; Wang F; Zhang Y; Wang H; Liu Y
    Anal Chem; 2020 Apr; 92(7):5546-5553. PubMed ID: 32186362
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sandwich-based evanescent wave fluorescent biosensor for simple, real-time exosome detection
    Li S; Zhu L; Zhu L; Mei X; Xu W
    Biosens Bioelectron; 2022 Mar; 200():113902. PubMed ID: 34954570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. AuNP-Amplified Surface Acoustic Wave Sensor for the Quantification of Exosomes.
    Wang C; Wang C; Jin D; Yu Y; Yang F; Zhang Y; Yao Q; Zhang GJ
    ACS Sens; 2020 Feb; 5(2):362-369. PubMed ID: 31933360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical fiber SPR biosensor based on gold nanoparticle amplification for DNA hybridization detection.
    Li L; Zhang YN; Zheng W; Li X; Zhao Y
    Talanta; 2022 Sep; 247():123599. PubMed ID: 35653863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructured Optical Fiber-based Biosensors: Reversible and Nanoliter-Scale Measurement of Zinc Ions.
    Heng S; McDevitt CA; Kostecki R; Morey JR; Eijkelkamp BA; Ebendorff-Heidepriem H; Monro TM; Abell AD
    ACS Appl Mater Interfaces; 2016 May; 8(20):12727-32. PubMed ID: 27152578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integration of black phosphorus and hollow-core anti-resonant fiber enables two-order magnitude enhancement of sensitivity for bisphenol A detection.
    Qiao P; Wang XH; Gao S; Yin X; Wang Y; Wang P
    Biosens Bioelectron; 2020 Feb; 149():111821. PubMed ID: 31733485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Construction of a DNA-AuNP-based satellite network for exosome analysis.
    Gao ML; Yin BC; Ye BC
    Analyst; 2019 Oct; 144(20):5996-6003. PubMed ID: 31536072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effective enrichment of trace exosomes for the label-free SERS detection via low-cost thermophoretic profiling.
    Guo Y; Zhang R; You H; Fang J
    Biosens Bioelectron; 2024 Jun; 253():116164. PubMed ID: 38422814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Miniaturized Laser Probe for Exosome-Based Cancer Liquid Biopsy.
    Suo M; Fu Y; Wang S; Lin S; Zhang J; Wu C; Yin H; Wang P; Zhang W; Wang XH
    Anal Chem; 2024 Feb; 96(5):1965-1976. PubMed ID: 38267074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasensitive Detection of Exosomes Using an Optical Microfiber Decorated with Plasmonic MoSe
    Li H; Huang T; Lu L; Yuan H; Zhang L; Wang H; Yu B
    ACS Sens; 2022 Jul; 7(7):1926-1935. PubMed ID: 35761169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A biochip based on shell-isolated Au@MnO
    Zhang Y; Fan J; Zhao J; Xu Z
    Biosens Bioelectron; 2022 Nov; 216():114373. PubMed ID: 36058026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A dual signal amplification method for exosome detection based on DNA dendrimer self-assembly.
    Gao ML; He F; Yin BC; Ye BC
    Analyst; 2019 Mar; 144(6):1995-2002. PubMed ID: 30698587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative and Specific Detection of Exosomal miRNAs for Accurate Diagnosis of Breast Cancer Using a Surface-Enhanced Raman Scattering Sensor Based on Plasmonic Head-Flocked Gold Nanopillars.
    Lee JU; Kim WH; Lee HS; Park KH; Sim SJ
    Small; 2019 Apr; 15(17):e1804968. PubMed ID: 30828996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes.
    Yu Y; Zhang WS; Guo Y; Peng H; Zhu M; Miao D; Su G
    Biosens Bioelectron; 2020 Nov; 167():112482. PubMed ID: 32795917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.