BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 36600880)

  • 1. Biological Effects, Applications and Design Strategies of Medical Polyurethanes Modified by Nanomaterials.
    Wang J; Dai D; Xie H; Li D; Xiong G; Zhang C
    Int J Nanomedicine; 2022; 17():6791-6819. PubMed ID: 36600880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional Zwitterionic Polyurethanes: State-of-the-Art Review.
    Zhang J; Lv S; Zhao X; Ma S; Zhou F
    Macromol Rapid Commun; 2024 Mar; 45(5):e2300606. PubMed ID: 38087799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Polyurethanes Modified by Ionic Liquids and Their Applications.
    Wang X; Zhao Z; Zhang M; Liang Y; Liu Y
    Int J Mol Sci; 2023 Jul; 24(14):. PubMed ID: 37511385
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review.
    Sobczak M; Kędra K
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heparin based polyurethanes: A state-of-the-art review.
    Zia F; Zia KM; Zuber M; Tabasum S; Rehman S
    Int J Biol Macromol; 2016 Mar; 84():101-11. PubMed ID: 26666430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomedical Applications of Carbohydrate-based Polyurethane: From Biosynthesis to Degradation.
    Batool JA; Rehman K; Qader A; Akash MSH
    Curr Pharm Des; 2022; 28(20):1669-1687. PubMed ID: 35040410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding the biodegradation of polyurethanes: from classical implants to tissue engineering materials.
    Santerre JP; Woodhouse K; Laroche G; Labow RS
    Biomaterials; 2005 Dec; 26(35):7457-70. PubMed ID: 16024077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. State of the Art of Small-Diameter Vessel-Polyurethane Substitutes.
    Li J; Chen Z; Yang X
    Macromol Biosci; 2019 May; 19(5):e1800482. PubMed ID: 30840365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradable polyurethane scaffolds in regenerative medicine: Clinical translation review.
    Pedersen DD; Kim S; Wagner WR
    J Biomed Mater Res A; 2022 Aug; 110(8):1460-1487. PubMed ID: 35481723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Progress of Polysaccharide-Contained Polyurethanes for Biomedical Applications.
    Ju DB; Lee JC; Hwang SK; Cho CS; Kim HJ
    Tissue Eng Regen Med; 2022 Oct; 19(5):891-912. PubMed ID: 35819712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of biodegradable elastomeric polyurethane scaffolds fabricated by the inkjet technique.
    Zhang C; Wen X; Vyavahare NR; Boland T
    Biomaterials; 2008 Oct; 29(28):3781-91. PubMed ID: 18602156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Current Versatility of Polyurethane Three-Dimensional Printing for Biomedical Applications.
    Griffin M; Castro N; Bas O; Saifzadeh S; Butler P; Hutmacher DW
    Tissue Eng Part B Rev; 2020 Jun; 26(3):272-283. PubMed ID: 32089089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of polyurethane and polyurethane based composite fibres by the electrospinning technique for soft tissue engineering of cardiovascular system.
    Kucinska-Lipka J; Gubanska I; Janik H; Sienkiewicz M
    Mater Sci Eng C Mater Biol Appl; 2015 Jan; 46():166-76. PubMed ID: 25491973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Starch based polyurethanes: A critical review updating recent literature.
    Zia F; Zia KM; Zuber M; Kamal S; Aslam N
    Carbohydr Polym; 2015 Dec; 134():784-98. PubMed ID: 26428186
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and surface properties of PEO-sulfonate grafted polyurethanes for enhanced blood compatibility.
    Han DK; Jeong SY; Ahn KD; Kim YH; Min BG
    J Biomater Sci Polym Ed; 1993; 4(6):579-89. PubMed ID: 8280672
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro biocompatibility assessment of sulfonated polyrotaxane-immobilized polyurethane surfaces.
    Park HD; Lee WK; Ooya T; Park KD; Kim YH; Yui N
    J Biomed Mater Res A; 2003 Sep; 66(3):596-604. PubMed ID: 12918043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of Xylose-Based Semisynthetic Polyurethane Tissue Adhesives with Enhanced Bioactivity Properties.
    Balcioglu S; Parlakpinar H; Vardi N; Denkbas EB; Karaaslan MG; Gulgen S; Taslidere E; Koytepe S; Ates B
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4456-66. PubMed ID: 26824739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving the elasticity and cytophilicity of biodegradable polyurethane by changing chain extender.
    Zhang C; Zhang N; Wen X
    J Biomed Mater Res B Appl Biomater; 2006 Nov; 79(2):335-44. PubMed ID: 16767730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface characteristics and blood compatibility of polyurethanes grafted by perfluoroalkyl chains.
    Han DK; Jeong SY; Kim YH; Min BG
    J Biomater Sci Polym Ed; 1992; 3(3):229-41. PubMed ID: 1610733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thromboresistance of Polyurethanes Modified with PEO-Silane Amphiphiles.
    Ngo BKD; Lim KK; Johnson JC; Jain A; Grunlan MA
    Macromol Biosci; 2020 Dec; 20(12):e2000193. PubMed ID: 32812374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.