BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 36600880)

  • 21. [Synthesis and characterization of polylactide-based thermosetting polyurethanes with shape memory properties].
    Shi S; Gu L; Yang Y; Yu H; Chen R; Xiao X; Qiu J
    Sheng Wu Gong Cheng Xue Bao; 2016 Jun; 32(6):831-838. PubMed ID: 29019191
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis and characterization of chitosan/curcumin blends based polyurethanes.
    Zia F; Zia KM; Zuber M; Rehman S; Tabasum S; Sultana S
    Int J Biol Macromol; 2016 Nov; 92():1074-1081. PubMed ID: 27497754
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications.
    Usman A; Zia KM; Zuber M; Tabasum S; Rehman S; Zia F
    Int J Biol Macromol; 2016 May; 86():630-45. PubMed ID: 26851360
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Negative cilia concept for thromboresistance: synergistic effect of PEO and sulfonate groups grafted onto polyurethanes.
    Han DK; Jeong SY; Kim YH; Min BG; Cho HI
    J Biomed Mater Res; 1991 May; 25(5):561-75. PubMed ID: 1869574
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis and characterization of iodinated polyurethane with inherent radiopacity.
    Kiran S; James NR; Joseph R; Jayakrishnan A
    Biomaterials; 2009 Oct; 30(29):5552-9. PubMed ID: 19596151
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of organic/inorganic nanoparticles on performance of polyurethane nanocomposites for potential wound dressing applications.
    Jafari A; Hassanajili S; Karimi MB; Emami A; Ghaffari F; Azarpira N
    J Mech Behav Biomed Mater; 2018 Dec; 88():395-405. PubMed ID: 30212687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stretching-induced nanostructures on shape memory polyurethane films and their regulation to osteoblasts morphology.
    Xing J; Ma Y; Lin M; Wang Y; Pan H; Ruan C; Luo Y
    Colloids Surf B Biointerfaces; 2016 Oct; 146():431-41. PubMed ID: 27395036
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and surface properties of polyurethane end-capped with hybrid hydrocarbon/fluorocarbon double-chain phospholipid.
    Li J; Zhang Y; Yang J; Tan H; Li J; Fu Q
    J Biomed Mater Res A; 2013 May; 101(5):1362-72. PubMed ID: 23077090
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structural elucidation and biological aptitude of modified hydroxyethylcellulose-polydimethyl siloxane based polyurethanes.
    Noreen A; Zia KM; Tabasum S; Aftab W; Shahid M; Zuber M
    Int J Biol Macromol; 2020 May; 150():426-440. PubMed ID: 32006577
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties and in vitro evaluation of high modulus biodegradable polyurethanes for applications in cardiovascular stents.
    Sgarioto M; Adhikari R; Gunatillake PA; Moore T; Malherbe F; Nagel MD; Patterson J
    J Biomed Mater Res B Appl Biomater; 2014 Nov; 102(8):1711-9. PubMed ID: 24668742
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cystine dimethyl ester cross-linked PEG-poly(urethane-urea)/nano-hydroxyapatite composited biomimetic scaffold for bone defect repair.
    Zhou Z; Wang Y; Qian Y; Pan X; Zhu J; Zhang Z; Qian Z; Sun Z; Pi B
    J Biomater Sci Polym Ed; 2020 Feb; 31(3):407-422. PubMed ID: 31747530
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis and evaluation of a biomedical polycarbonate urethane tested in an in vitro study and an ovine arthroplasty model. Part I: materials selection and evaluation.
    Khan I; Smith N; Jones E; Finch DS; Cameron RE
    Biomaterials; 2005 Feb; 26(6):621-31. PubMed ID: 15282140
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [The advance of research for biocompatibility of medical polyurethanes].
    Li J; Xie X; He C; Fan C; Zhong Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2002 Jun; 19(2):315-9. PubMed ID: 12224309
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of biodegradable thermoplastic polyurethanes for tissue repair.
    Xu C; Hong Y
    Bioact Mater; 2022 Sep; 15():250-271. PubMed ID: 35386346
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interaction of blood components with heparin-immobilized polyurethanes prepared by plasma glow discharge.
    Kang IK; Seo EJ; Huh MW; Kim KH
    J Biomater Sci Polym Ed; 2001; 12(10):1091-108. PubMed ID: 11853380
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Argon plasma modified nanocomposite polyurethane scaffolds provide an alternative strategy for cartilage tissue engineering.
    Griffin M; Kalaskar D; Butler P
    J Nanobiotechnology; 2019 Apr; 17(1):51. PubMed ID: 30954085
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis and characterization of chitosan modified polyurethane bio-nanocomposites with biomedical potential.
    Javaid MA; Khera RA; Zia KM; Saito K; Bhatti IA; Asghar M
    Int J Biol Macromol; 2018 Aug; 115():375-384. PubMed ID: 29627473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel solvent system for blending of polyurethane and heparin.
    Lv Q; Cao C; Zhu H
    Biomaterials; 2003 Oct; 24(22):3915-9. PubMed ID: 12834586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A facile approach toward multi-functional polyurethane/polyethersulfone composite membranes for versatile applications.
    Wang R; Xiang T; Zhao WF; Zhao CS
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():556-564. PubMed ID: 26652408
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Biobased polyurethanes for biomedical applications.
    Wendels S; Avérous L
    Bioact Mater; 2021 Apr; 6(4):1083-1106. PubMed ID: 33102948
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.