These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
185 related articles for article (PubMed ID: 36600913)
1. Heritable priming by Tiwari M; Singh R; Jha R; Singh P Front Plant Sci; 2022; 13():1050765. PubMed ID: 36600913 [TBL] [Abstract][Full Text] [Related]
2. Trichoderma cf. asperellum and plant-based titanium dioxide nanoparticles initiate morphological and biochemical modifications in Hordeum vulgare L. against Bipolaris sorokiniana. Metwally RA; Soliman SA; Abdalla H; Abdelhameed RE BMC Plant Biol; 2024 Feb; 24(1):118. PubMed ID: 38368386 [TBL] [Abstract][Full Text] [Related]
3. Singh UB; Malviya D; Singh S; Kumar M; Sahu PK; Singh HV; Kumar S; Roy M; Imran M; Rai JP; Sharma AK; Saxena AK Front Microbiol; 2019; 10():1697. PubMed ID: 31417511 [TBL] [Abstract][Full Text] [Related]
4. Improved tolerance to post-anthesis drought stress by pre-drought priming at vegetative stages in drought-tolerant and -sensitive wheat cultivars. Abid M; Tian Z; Ata-Ul-Karim ST; Liu Y; Cui Y; Zahoor R; Jiang D; Dai T Plant Physiol Biochem; 2016 Sep; 106():218-27. PubMed ID: 27179928 [TBL] [Abstract][Full Text] [Related]
5. Transcriptome-based analysis of resistance mechanisms to Bipolaris sorokiniana, a common wheat root-rot disease. Qalavand F; Nasr-Esfahani M; Vatandoost J; Azarm DA Plant Biol (Stuttg); 2023 Jan; 25(1):119-130. PubMed ID: 36177724 [TBL] [Abstract][Full Text] [Related]
7. Bio-priming with salt tolerant endophytes improved crop tolerance to salt stress Irshad K; Shaheed Siddiqui Z; Chen J; Rao Y; Hamna Ansari H; Wajid D; Nida K; Wei X Front Plant Sci; 2023; 14():1082480. PubMed ID: 36968419 [TBL] [Abstract][Full Text] [Related]
8. Biosynthesized silver nanoparticles enhanced wheat resistance to Bipolaris sorokiniana. Bibi S; Raza M; Shahbaz M; Ajmal M; Mehak A; Fatima N; Abasi F; Sathiya Seelan JS; Raja NI; Yongchao B; Zain M; Javaid RA; Maimaiti Y Plant Physiol Biochem; 2023 Oct; 203():108067. PubMed ID: 37832369 [TBL] [Abstract][Full Text] [Related]
9. Al-Sadi AM Front Cell Infect Microbiol; 2021; 11():584899. PubMed ID: 33777829 [TBL] [Abstract][Full Text] [Related]
10. Unraveling the dynamics of wheat leaf blight complex: isolation, characterization, and insights into pathogen population under Indian conditions. Aditya S; Aggarwal R; Bashyal BM; Gurjar MS; Saharan MS; Aggarwal S Front Microbiol; 2024; 15():1287721. PubMed ID: 38450160 [TBL] [Abstract][Full Text] [Related]
11. Enhancing wheat crop production with eco-friendly chitosan encapsulated nickel oxide nanocomposites: A safe and sustainable solution for higher yield. Sharma K; Sharma R; Kumari S; Kumari A Int J Biol Macromol; 2023 Dec; 253(Pt 7):127413. PubMed ID: 37858657 [TBL] [Abstract][Full Text] [Related]
12. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. Satti SH; Raja NI; Javed B; Akram A; Mashwani ZU; Ahmad MS; Ikram M PLoS One; 2021; 16(2):e0246880. PubMed ID: 33571310 [TBL] [Abstract][Full Text] [Related]
13. The Cysteine-Rich Repeat Protein TaCRR1 Participates in Defense against Both Guo F; Shan Z; Yu J; Xu G; Zhang Z Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32784820 [TBL] [Abstract][Full Text] [Related]
14. Silicon-Mediated Priming Induces Acclimation to Mild Water-Deficit Stress by Altering Physio-Biochemical Attributes in Wheat Plants. Hameed A; Farooq T; Hameed A; Sheikh MA Front Plant Sci; 2021; 12():625541. PubMed ID: 33679838 [TBL] [Abstract][Full Text] [Related]
15. Differential expression profiling of microRNAs and their target genes during wheat- Sharma P; Gupta OP; Gupta V; Singh G; Singh GP Physiol Mol Biol Plants; 2021 Nov; 27(11):2567-2577. PubMed ID: 34924711 [TBL] [Abstract][Full Text] [Related]
16. Heat shock-induced enhanced susceptibility of barley to Bipolaris sorokiniana is associated with elevated ROS production and plant defence-related gene expression. Künstler A; Füzék K; Schwarczinger I; Nagy JK; Bakonyi J; Fodor J; Hafez YM; Király L Plant Biol (Stuttg); 2023 Aug; 25(5):803-812. PubMed ID: 37194683 [TBL] [Abstract][Full Text] [Related]
17. Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. Ahmad S; Gordon-Weeks R; Pickett J; Ton J Mol Plant Pathol; 2010 Nov; 11(6):817-27. PubMed ID: 21029325 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of Pathogenic Variability Based on Leaf Blotch Disease Development Components of Sultana S; Adhikary SK; Islam MM; Rahman SMM Plant Pathol J; 2018 Apr; 34(2):93-103. PubMed ID: 29628815 [TBL] [Abstract][Full Text] [Related]
19. Trichoderma for climate resilient agriculture. Kashyap PL; Rai P; Srivastava AK; Kumar S World J Microbiol Biotechnol; 2017 Aug; 33(8):155. PubMed ID: 28695465 [TBL] [Abstract][Full Text] [Related]
20. Botanical-chemical formulations enhanced yield and protection against Bipolaris sorokiniana in wheat by inducing the expression of pathogenesis-related proteins. Naz R; Nosheen A; Yasmin H; Bano A; Keyani R PLoS One; 2018; 13(4):e0196194. PubMed ID: 29708983 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]