These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36601365)

  • 1. Development and evaluation of an interoperable natural language processing system for identifying pneumonia across clinical settings of care and institutions.
    Chapman AB; Peterson KS; Rutter E; Nevers M; Zhang M; Ying J; Jones M; Classen D; Jones B
    JAMIA Open; 2022 Dec; 5(4):ooac114. PubMed ID: 36601365
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and Validation of a Natural Language Processing Tool to Identify Patients Treated for Pneumonia across VA Emergency Departments.
    Jones BE; South BR; Shao Y; Lu CC; Leng J; Sauer BC; Gundlapalli AV; Samore MH; Zeng Q
    Appl Clin Inform; 2018 Jan; 9(1):122-128. PubMed ID: 29466818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Methodological Approach to Validate Pneumonia Encounters from Radiology Reports Using Natural Language Processing.
    Panny A; Hegde H; Glurich I; Scannapieco FA; Vedre JG; VanWormer JJ; Miecznikowski J; Acharya A
    Methods Inf Med; 2022 May; 61(1-02):38-45. PubMed ID: 35381617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Language Processing Algorithm to Extract Multiple Myeloma Stage From Oncology Notes in the Veterans Affairs Healthcare System.
    Goryachev SD; Yildirim C; DuMontier C; La J; Dharne M; Gaziano JM; Brophy MT; Munshi NC; Driver JA; Do NV; Fillmore NR
    JCO Clin Cancer Inform; 2024 Jul; 8():e2300197. PubMed ID: 39038255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying incarceration status in the electronic health record using large language models in emergency department settings.
    Huang T; Socrates V; Gilson A; Safranek C; Chi L; Wang EA; Puglisi LB; Brandt C; Taylor RA; Wang K
    J Clin Transl Sci; 2024; 8(1):e53. PubMed ID: 38544748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries.
    Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H
    J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natural language processing of radiology reports for identification of skeletal site-specific fractures.
    Wang Y; Mehrabi S; Sohn S; Atkinson EJ; Amin S; Liu H
    BMC Med Inform Decis Mak; 2019 Apr; 19(Suppl 3):73. PubMed ID: 30943952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ensembles of natural language processing systems for portable phenotyping solutions.
    Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C
    J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of Long Bone Fractures in Radiology Reports Using Natural Language Processing to support Healthcare Quality Improvement.
    Grundmeier RW; Masino AJ; Casper TC; Dean JM; Bell J; Enriquez R; Deakyne S; Chamberlain JM; Alpern ER;
    Appl Clin Inform; 2016 Nov; 7(4):1051-1068. PubMed ID: 27826610
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bridging information gaps in menopause status classification through natural language processing.
    Eyre H; Alba PR; Gibson CJ; Gatsby E; Lynch KE; Patterson OV; DuVall SL
    JAMIA Open; 2024 Apr; 7(1):ooae013. PubMed ID: 38419670
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of natural language processing to identify social needs from patient medical notes: development and assessment of a scalable, performant, and rule-based model in an integrated healthcare delivery system.
    Gray GM; Zirikly A; Ahumada LM; Rouhizadeh M; Richards T; Kitchen C; Foroughmand I; Hatef E
    JAMIA Open; 2023 Dec; 6(4):ooad085. PubMed ID: 37799347
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Understanding the performance and reliability of NLP tools: a comparison of four NLP tools predicting stroke phenotypes in radiology reports.
    Casey A; Davidson E; Grover C; Tobin R; Grivas A; Zhang H; Schrempf P; O'Neil AQ; Lee L; Walsh M; Pellie F; Ferguson K; Cvoro V; Wu H; Whalley H; Mair G; Whiteley W; Alex B
    Front Digit Health; 2023; 5():1184919. PubMed ID: 37840686
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of a generalizable natural language processing pipeline to extract physician-reported pain from clinical reports: Generated using publicly-available datasets and tested on institutional clinical reports for cancer patients with bone metastases.
    Naseri H; Kafi K; Skamene S; Tolba M; Faye MD; Ramia P; Khriguian J; Kildea J
    J Biomed Inform; 2021 Aug; 120():103864. PubMed ID: 34265451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and assessment of a natural language processing model to identify residential instability in electronic health records' unstructured data: a comparison of 3 integrated healthcare delivery systems.
    Hatef E; Rouhizadeh M; Nau C; Xie F; Rouillard C; Abu-Nasser M; Padilla A; Lyons LJ; Kharrazi H; Weiner JP; Roblin D
    JAMIA Open; 2022 Apr; 5(1):ooac006. PubMed ID: 35224458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measuring Adoption of Patient Priorities-Aligned Care Using Natural Language Processing of Electronic Health Records: Development and Validation of the Model.
    Razjouyan J; Freytag J; Dindo L; Kiefer L; Odom E; Halaszynski J; Silva JW; Naik AD
    JMIR Med Inform; 2021 Feb; 9(2):e18756. PubMed ID: 33605893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Portability of natural language processing methods to detect suicidality from clinical text in US and UK electronic health records.
    Cusick M; Velupillai S; Downs J; Campion TR; Sholle ET; Dutta R; Pathak J
    J Affect Disord Rep; 2022 Dec; 10():. PubMed ID: 36644339
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identifying Suicidal Adolescents from Mental Health Records Using Natural Language Processing.
    Velupillai S; Epstein S; Bittar A; Stephenson T; Dutta R; Downs J
    Stud Health Technol Inform; 2019 Aug; 264():413-417. PubMed ID: 31437956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and validation of a pragmatic natural language processing approach to identifying falls in older adults in the emergency department.
    Patterson BW; Jacobsohn GC; Shah MN; Song Y; Maru A; Venkatesh AK; Zhong M; Taylor K; Hamedani AG; Mendonça EA
    BMC Med Inform Decis Mak; 2019 Jul; 19(1):138. PubMed ID: 31331322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Goals of Care Conversations in the Electronic Health Record Using Natural Language Processing and Machine Learning.
    Lee RY; Brumback LC; Lober WB; Sibley J; Nielsen EL; Treece PD; Kross EK; Loggers ET; Fausto JA; Lindvall C; Engelberg RA; Curtis JR
    J Pain Symptom Manage; 2021 Jan; 61(1):136-142.e2. PubMed ID: 32858164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of Natural Language Processing Algorithms to Identify Common Data Elements in Operative Notes for Total Hip Arthroplasty.
    Wyles CC; Tibbo ME; Fu S; Wang Y; Sohn S; Kremers WK; Berry DJ; Lewallen DG; Maradit-Kremers H
    J Bone Joint Surg Am; 2019 Nov; 101(21):1931-1938. PubMed ID: 31567670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.