These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36601543)

  • 1. Dual-slope imaging of cerebral hemodynamics with frequency-domain near-infrared spectroscopy.
    Blaney G; Fernandez C; Sassaroli A; Fantini S
    Neurophotonics; 2023 Jan; 10(1):013508. PubMed ID: 36601543
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Single-distance and dual-slope frequency-domain near-infrared spectroscopy to assess skeletal muscle hemodynamics.
    Fernandez C; Blaney G; Frias J; Tavakoli F; Sassaroli A; Fantini S
    J Biomed Opt; 2023 Dec; 28(12):125004. PubMed ID: 38098980
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase dual-slopes in frequency-domain near-infrared spectroscopy for enhanced sensitivity to brain tissue: First applications to human subjects.
    Blaney G; Sassaroli A; Pham T; Fernandez C; Fantini S
    J Biophotonics; 2020 Jan; 13(1):e201960018. PubMed ID: 31479582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-distance frequency-domain optical measurements of coherent cerebral hemodynamics.
    Blaney G; Sassaroli A; Pham T; Krishnamurthy N; Fantini S
    Photonics; 2019; 6(3):. PubMed ID: 34079837
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequency-Domain Techniques for Cerebral and Functional Near-Infrared Spectroscopy.
    Fantini S; Sassaroli A
    Front Neurosci; 2020; 14():300. PubMed ID: 32317921
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-slope imaging in highly scattering media with frequency-domain near-infrared spectroscopy.
    Blaney G; Sassaroli A; Fantini S
    Opt Lett; 2020 Aug; 45(16):4464-4467. PubMed ID: 32796984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Depth dependence of coherent hemodynamics in the human head.
    Khaksari K; Blaney G; Sassaroli A; Krishnamurthy N; Pham T; Fantini S
    J Biomed Opt; 2018 Nov; 23(12):1-9. PubMed ID: 30444084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensitivity of frequency-domain optical measurements to brain hemodynamics: simulations and human study of cerebral blood flow during hypercapnia.
    Pham T; Blaney G; Sassaroli A; Fernandez C; Fantini S
    Biomed Opt Express; 2021 Feb; 12(2):766-789. PubMed ID: 33680541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of functional activation responses from the auditory cortex derived using multi-distance frequency domain and continuous wave near-infrared spectroscopy.
    Mohammad PPS; Isarangura S; Eddins A; Parthasarathy AB
    Neurophotonics; 2021 Oct; 8(4):045004. PubMed ID: 34926716
    [No Abstract]   [Full Text] [Related]  

  • 10. Signal regression in frequency-domain diffuse optical tomography to remove superficial signal contamination.
    Veesa JD; Dehghani H
    Neurophotonics; 2021 Jan; 8(1):015013. PubMed ID: 33816650
    [No Abstract]   [Full Text] [Related]  

  • 11. Noninvasive Optical Measurements of Dynamic Cerebral Autoregulation by Inducing Oscillatory Cerebral Hemodynamics.
    Pham T; Fernandez C; Blaney G; Tgavalekos K; Sassaroli A; Cai X; Bibu S; Kornbluth J; Fantini S
    Front Neurol; 2021; 12():745987. PubMed ID: 34867729
    [No Abstract]   [Full Text] [Related]  

  • 12. Transformational change in the field of diffuse optics: From going bananas to going nuts.
    Fantini S; Blaney G; Sassaroli A
    J Innov Opt Health Sci; 2020 Jan; 13(1):. PubMed ID: 36340430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Short-channel functional near-infrared spectroscopy regressions improve when source-detector separation is reduced.
    Goodwin JR; Gaudet CR; Berger AJ
    Neurophotonics; 2014 Jul; 1(1):015002. PubMed ID: 26157972
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using depth-enhanced diffuse correlation spectroscopy and near-infrared spectroscopy to isolate cerebral hemodynamics during transient hypotension.
    Shoemaker LN; Milej D; Mistry J; St Lawrence K
    Neurophotonics; 2023 Apr; 10(2):025013. PubMed ID: 37284246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity of near-infrared spectroscopy and diffuse correlation spectroscopy to brain hemodynamics: simulations and experimental findings during hypercapnia.
    Selb J; Boas DA; Chan ST; Evans KC; Buckley EM; Carp SA
    Neurophotonics; 2014 Jul; 1(1):. PubMed ID: 25453036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hemodynamics and Tissue Optical Properties in Bimodal Infarctions Induced by Middle Cerebral Artery Occlusion.
    Wu CW; Chen JJ; Lin CK; Chen CA; Wu CI; Hwang IS; Hsieh TH; Lin BS; Peng CW
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantification of blood flow index in diffuse correlation spectroscopy using a robust deep learning method.
    Wang Q; Pan M; Zang Z; Li DD
    J Biomed Opt; 2024 Jan; 29(1):015004. PubMed ID: 38283935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Compact Multi-Distance DCS and Time Domain NIRS Hybrid System for Hemodynamic and Metabolic Measurements.
    Amendola C; Lacerenza M; Buttafava M; Tosi A; Spinelli L; Contini D; Torricelli A
    Sensors (Basel); 2021 Jan; 21(3):. PubMed ID: 33525488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-detector Corrected Near Infrared Spectroscopy (C-NIRS) detects hemodynamic activation responses more robustly than single-detector NIRS.
    Saager RB; Telleri NL; Berger AJ
    Neuroimage; 2011 Apr; 55(4):1679-85. PubMed ID: 21256223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of a novel hemodynamic model for coherent hemodynamics spectroscopy (CHS) and functional brain studies with fNIRS and fMRI.
    Pierro ML; Hallacoglu B; Sassaroli A; Kainerstorfer JM; Fantini S
    Neuroimage; 2014 Jan; 85 Pt 1(0 1):222-33. PubMed ID: 23562703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.