BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 36601704)

  • 1. Artificial nanovesicles for dsRNA delivery in spray-induced gene silencing for crop protection.
    Qiao L; Niño-Sánchez J; Hamby R; Capriotti L; Chen A; Mezzetti B; Jin H
    Plant Biotechnol J; 2023 Apr; 21(4):854-865. PubMed ID: 36601704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial nanovesicles for dsRNA delivery in spray induced gene silencing for crop protection.
    Qiao L; Niño-Sánchez J; Hamby R; Capriotti L; Chen A; Mezzetti B; Jin H
    bioRxiv; 2023 Jan; ():. PubMed ID: 36711993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. BioClay™ prolongs RNA interference-mediated crop protection against Botrytis cinerea.
    Niño-Sánchez J; Sambasivam PT; Sawyer A; Hamby R; Chen A; Czislowski E; Li P; Manzie N; Gardiner DM; Ford R; Xu ZP; Mitter N; Jin H
    J Integr Plant Biol; 2022 Nov; 64(11):2187-2198. PubMed ID: 36040241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications.
    Hoang BTL; Fletcher SJ; Brosnan CA; Ghodke AB; Manzie N; Mitter N
    Int J Mol Sci; 2022 Jun; 23(12):. PubMed ID: 35743077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking.
    Chen A; Halilovic L; Shay JH; Koch A; Mitter N; Jin H
    Curr Opin Plant Biol; 2023 Dec; 76():102441. PubMed ID: 37696727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesizing Fluorescently Labeled dsRNAs and sRNAs to Visualize Fungal RNA Uptake.
    Hamby R; Wang M; Qiao L; Jin H
    Methods Mol Biol; 2020; 2166():215-225. PubMed ID: 32710411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spray-Induced Silencing of Pathogenicity Gene
    Sarkar A; Roy-Barman S
    Front Plant Sci; 2021; 12():733129. PubMed ID: 34899771
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spray-induced gene silencing for disease control is dependent on the efficiency of pathogen RNA uptake.
    Qiao L; Lan C; Capriotti L; Ah-Fong A; Nino Sanchez J; Hamby R; Heller J; Zhao H; Glass NL; Judelson HS; Mezzetti B; Niu D; Jin H
    Plant Biotechnol J; 2021 Sep; 19(9):1756-1768. PubMed ID: 33774895
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and Characterization of Barley (
    Schlemmer T; Barth P; Weipert L; Preußer C; Hardt M; Möbus A; Busche T; Koch A
    Int J Mol Sci; 2021 Jul; 22(13):. PubMed ID: 34281265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spray-Induced Gene Silencing: a Powerful Innovative Strategy for Crop Protection.
    Wang M; Jin H
    Trends Microbiol; 2017 Jan; 25(1):4-6. PubMed ID: 27923542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Requirements for fungal uptake of dsRNA and gene silencing in RNAi-based crop protection strategies.
    Šečić E; Kogel KH
    Curr Opin Biotechnol; 2021 Aug; 70():136-142. PubMed ID: 34000482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA Interference Past and Future Applications in Plants.
    Koeppe S; Kawchuk L; Kalischuk M
    Int J Mol Sci; 2023 Jun; 24(11):. PubMed ID: 37298705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes.
    Zotti M; Dos Santos EA; Cagliari D; Christiaens O; Taning CNT; Smagghe G
    Pest Manag Sci; 2018 Jun; 74(6):1239-1250. PubMed ID: 29194942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spray-Induced Gene Silencing to Study Gene Function in Phytophthora.
    Sundararajan P; Kalyandurg PB; Liu Q; Chawade A; Whisson SC; Vetukuri RR
    Methods Mol Biol; 2022; 2536():459-474. PubMed ID: 35819621
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the
    Höfle L; Biedenkopf D; Werner BT; Shrestha A; Jelonek L; Koch A
    RNA Biol; 2020 Apr; 17(4):463-473. PubMed ID: 31814508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Double-Stranded RNAs (dsRNAs) as a Sustainable Tool against Gray Mold (
    Nerva L; Sandrini M; Gambino G; Chitarra W
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 32013165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concepts and considerations for enhancing RNAi efficiency in phytopathogenic fungi for RNAi-based crop protection using nanocarrier-mediated dsRNA delivery systems.
    Ray P; Sahu D; Aminedi R; Chandran D
    Front Fungal Biol; 2022; 3():977502. PubMed ID: 37746174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Minicell-based fungal RNAi delivery for sustainable crop protection.
    Islam MT; Davis Z; Chen L; Englaender J; Zomorodi S; Frank J; Bartlett K; Somers E; Carballo SM; Kester M; Shakeel A; Pourtaheri P; Sherif SM
    Microb Biotechnol; 2021 Jul; 14(4):1847-1856. PubMed ID: 33624940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size variations of mesoporous silica nanoparticle control uptake efficiency and delivery of AC2-derived dsRNA for protection against tomato leaf curl New Delhi virus.
    Sangwan A; Gupta D; Singh OW; Roy A; Mukherjee SK; Mandal B; Singh N
    Plant Cell Rep; 2023 Oct; 42(10):1571-1587. PubMed ID: 37482559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.