These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36601764)

  • 1. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. I. Neutral atoms with Z = 2-118.
    Olukayode S; Froese Fischer C; Volkov A
    Acta Crystallogr A Found Adv; 2023 Jan; 79(Pt 1):59-79. PubMed ID: 36601764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Revisited relativistic Dirac-Hartree-Fock X-ray scattering factors. II. Chemically relevant cations and selected monovalent anions for atoms with Z = 3-112.
    Olukayode S; Froese Fischer C; Volkov A
    Acta Crystallogr A Found Adv; 2023 May; 79(Pt 3):229-245. PubMed ID: 36999622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relativistic Effects in the Electronic Structure of Atoms.
    Tatewaki H; Yamamoto S; Hatano Y
    ACS Omega; 2017 Sep; 2(9):6072-6080. PubMed ID: 31457856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relativistic analytical wave functions and scattering factors for neutral atoms beyond Kr and for all chemically important ions up to I-.
    Macchi P; Coppens P
    Acta Crystallogr A; 2001 Nov; 57(Pt 6):656-62. PubMed ID: 11679695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale Dirac-Fock-Breit method using density fitting and 2-spinor basis functions.
    Kelley MS; Shiozaki T
    J Chem Phys; 2013 May; 138(20):204113. PubMed ID: 23742460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electron correlation within the relativistic no-pair approximation.
    Almoukhalalati A; Knecht S; Jensen HJ; Dyall KG; Saue T
    J Chem Phys; 2016 Aug; 145(7):074104. PubMed ID: 27544084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic scattering factors for K-shell and L-shell ionization by fast electrons.
    Oxley MP; Allen LJ
    Acta Crystallogr A; 2000 Sep; 56 (Pt 5)():470-90. PubMed ID: 10967525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A closed-shell coupled-cluster treatment of the Breit-Pauli first-order relativistic energy correction.
    Coriani S; Helgaker T; Jørgensen P; Klopper W
    J Chem Phys; 2004 Oct; 121(14):6591-8. PubMed ID: 15473713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient Four-Component Dirac-Coulomb-Gaunt Hartree-Fock in the Pauli Spinor Representation.
    Sun S; Stetina TF; Zhang T; Hu H; Valeev EF; Sun Q; Li X
    J Chem Theory Comput; 2021 Jun; 17(6):3388-3402. PubMed ID: 34029469
    [TBL] [Abstract][Full Text] [Related]  

  • 10. X-ray constrained unrestricted Hartree-Fock and Douglas-Kroll-Hess wavefunctions.
    Hudák M; Jayatilaka D; Perasínová L; Biskupic S; Kozísek J; Bucinský L
    Acta Crystallogr A; 2010 Jan; 66(Pt 1):78-92. PubMed ID: 20029135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic scattering factors for K-shell electron energy-loss spectroscopy.
    Oxley MP; Allen LJ
    Acta Crystallogr A; 2001 Nov; 57(Pt 6):713-28. PubMed ID: 11679703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Performance of Effective Core Potentials for Density Functional Calculations on 3d Transition Metals.
    Xu X; Truhlar DG
    J Chem Theory Comput; 2012 Jan; 8(1):80-90. PubMed ID: 26592870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relativistic heavy-atom effects on heavy-atom nuclear shieldings.
    Lantto P; Romero RH; Gómez SS; Aucar GA; Vaara J
    J Chem Phys; 2006 Nov; 125(18):184113. PubMed ID: 17115744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PyBERTHART: A Relativistic Real-Time Four-Component TDDFT Implementation Using Prototyping Techniques Based on Python.
    De Santis M; Storchi L; Belpassi L; Quiney HM; Tarantelli F
    J Chem Theory Comput; 2020 Apr; 16(4):2410-2429. PubMed ID: 32101419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Can X-ray constrained Hartree-Fock wavefunctions retrieve electron correlation?
    Genoni A; Dos Santos LH; Meyer B; Macchi P
    IUCrJ; 2017 Mar; 4(Pt 2):136-146. PubMed ID: 28250952
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dirac-Fock-Breit-Gaunt calculations for tungsten hexacarbonyl W(CO)6.
    Malli GL
    J Chem Phys; 2016 May; 144(19):194301. PubMed ID: 27208943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modified form factors from multiconfiguration Dirac-Fock wave functions for neutral atoms with Z = 70-100.
    Kahane S
    Acta Crystallogr A; 1999 Jul; 55(Pt 4):648-651. PubMed ID: 10927275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiconfiguration Dirac-Hartree-Fock adjusted energy-consistent pseudopotential for uranium: spin-orbit configuration interaction and Fock-space coupled-cluster study of U4+ and U5+.
    Weigand A; Cao X; Vallet V; Flament JP; Dolg M
    J Phys Chem A; 2009 Oct; 113(43):11509-16. PubMed ID: 19601603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Z dependence of electron scattering by single atoms into annular dark-field detectors.
    Treacy MM
    Microsc Microanal; 2011 Dec; 17(6):847-58. PubMed ID: 22051035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hartree-Fock implementation using a Laguerre-based wave function for the ground state and correlation energies of two-electron atoms.
    King AW; Baskerville AL; Cox H
    Philos Trans A Math Phys Eng Sci; 2018 Mar; 376(2115):. PubMed ID: 29431681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.