These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 36601867)

  • 1. Assembly of biomimetic microreactors using caged-coacervate droplets.
    Jobdeedamrong A; Cao S; Harley I; Crespy D; Landfester K; Caire da Silva L
    Nanoscale; 2023 Feb; 15(6):2561-2566. PubMed ID: 36601867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic core-shell silica nanoparticles using a dual-functional peptide.
    Tengjisi ; Hui Y; Yang G; Fu C; Liu Y; Zhao CX
    J Colloid Interface Sci; 2021 Jan; 581(Pt A):185-194. PubMed ID: 32771730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation Using Plant Proteins: Thermodynamics and Kinetics of Wetting for Simple Zein Coacervates.
    Li X; Erni P; van der Gucht J; de Vries R
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15802-15809. PubMed ID: 32119509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-induced ordering and wetting transitions of droplets of thermotropic liquid crystals "caged" inside partially filled polymeric capsules.
    Carlton RJ; Zayas-Gonzalez YM; Manna U; Lynn DM; Abbott NL
    Langmuir; 2014 Dec; 30(49):14944-53. PubMed ID: 24911044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial biomimetic synthesis of silica nanocapsules using a recombinant catalytic modular protein.
    Wibowo D; Zhao CX; Middelberg AP
    Langmuir; 2015 Feb; 31(6):1999-2007. PubMed ID: 25604437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic Silica Nanocapsules for Tunable Sustained Release and Cargo Protection.
    Yang GZ; Wibowo D; Yun JH; Wang L; Middelberg APJ; Zhao CX
    Langmuir; 2017 Jun; 33(23):5777-5785. PubMed ID: 28511536
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catanionic Coacervate Droplets as a Surfactant-Based Membrane-Free Protocell Model.
    Douliez JP; Martin N; Gaillard C; Beneyton T; Baret JC; Mann S; Beven L
    Angew Chem Int Ed Engl; 2017 Oct; 56(44):13689-13693. PubMed ID: 28901673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-based coacervates in therapeutic applications.
    Ma L; Fang X; Wang C
    Front Bioeng Biotechnol; 2022; 10():1100365. PubMed ID: 36686257
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Complex coacervates as artificial membraneless organelles and protocells.
    Deng NN
    Biomicrofluidics; 2020 Sep; 14(5):051301. PubMed ID: 32922586
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells.
    Gaur D; Dubey NC; Tripathi BP
    Adv Colloid Interface Sci; 2022 Jan; 299():102566. PubMed ID: 34864354
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spontaneous Membranization in a Silk-Based Coacervate Protocell Model.
    Yin Z; Tian L; Patil AJ; Li M; Mann S
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202202302. PubMed ID: 35176203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic Liquid-Based Catanionic Coacervates: Novel Microreactors for Membrane-Free Sequestration of Dyes and Curcumin.
    Shah A; Kuddushi M; Rajput S; El Seoud OA; Malek NI
    ACS Omega; 2018 Dec; 3(12):17751-17761. PubMed ID: 31458372
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-Based Coacervate-Core Vesicles with Semipermeable Membranes.
    Abbas M; Law JO; Grellscheid SN; Huck WTS; Spruijt E
    Adv Mater; 2022 Aug; 34(34):e2202913. PubMed ID: 35796384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrospinnable, Neutral Coacervates for Facile Preparation of Solid Phenolic Bioadhesives.
    Kim JS; Hwang H; Lee D; Lee H
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):37989-37996. PubMed ID: 34346669
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding How Coacervates Drive Reversible Small Molecule Reactions to Promote Molecular Complexity.
    Jacobs MI; Jira ER; Schroeder CM
    Langmuir; 2021 Dec; 37(49):14323-14335. PubMed ID: 34856104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. UVO-tunable superhydrophobic to superhydrophilic wetting transition on biomimetic nanostructured surfaces.
    Han JT; Kim S; Karim A
    Langmuir; 2007 Feb; 23(5):2608-14. PubMed ID: 17269808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wetting behavior of polyelectrolyte complex coacervates on solid surfaces.
    Balzer C; Zhang P; Wang ZG
    Soft Matter; 2022 Aug; 18(34):6326-6339. PubMed ID: 35976083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity.
    Jung YC; Bhushan B
    Langmuir; 2009 Dec; 25(24):14165-73. PubMed ID: 19637877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endocytosis of Coacervates into Liposomes.
    Lu T; Liese S; Schoenmakers L; Weber CA; Suzuki H; Huck WTS; Spruijt E
    J Am Chem Soc; 2022 Aug; 144(30):13451-13455. PubMed ID: 35878395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.