These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 36601933)

  • 1. Artifact identification in X-ray diffraction data using machine learning methods.
    Yanxon H; Weng J; Parraga H; Xu W; Ruett U; Schwarz N
    J Synchrotron Radiat; 2023 Jan; 30(Pt 1):137-146. PubMed ID: 36601933
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput and high-resolution powder X-ray diffractometer consisting of six sets of 2D CdTe detectors with variable sample-to-detector distance and innovative automation system.
    Kawaguchi S; Kobayashi S; Yamada H; Ashitani H; Takemoto M; Imai Y; Hatsui T; Sugimoto K; Sakata O
    J Synchrotron Radiat; 2024 Jul; 31(Pt 4):955-967. PubMed ID: 38900456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first protein crystal structure determined from high-resolution X-ray powder diffraction data: a variant of T3R3 human insulin-zinc complex produced by grinding.
    Von Dreele RB; Stephens PW; Smith GD; Blessing RH
    Acta Crystallogr D Biol Crystallogr; 2000 Dec; 56(Pt 12):1549-53. PubMed ID: 11092920
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Depicting the crystal structure of fibrous ferrierite from British Columbia using a combined synchrotron techniques approach.
    Giacobbe C; Wright J; Dejoie C; Tafforeau P; Berruyer C; Vigliaturo R; Gieré R; Gualtieri AF
    J Appl Crystallogr; 2019 Dec; 52(Pt 6):1397-1408. PubMed ID: 31798362
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specimen-displacement correction for powder X-ray diffraction in Debye-Scherrer geometry with a flat area detector.
    Hulbert BS; Kriven WM
    J Appl Crystallogr; 2023 Feb; 56(Pt 1):160-166. PubMed ID: 36777137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Powder X-ray diffraction detection on a paper-based platform.
    Ouyang L; Liu Q; Xu C; Liu C; Liang H
    Talanta; 2017 Mar; 164():283-290. PubMed ID: 28107931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multipole electron densities and structural parameters from synchrotron powder X-ray diffraction data obtained with a MYTHEN detector system (OHGI).
    Svane B; Tolborg K; Kato K; Iversen BB
    Acta Crystallogr A Found Adv; 2021 Mar; 77(Pt 2):85-95. PubMed ID: 33646194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetic products in coordination networks: ab initio X-ray powder diffraction analysis.
    Martí-Rujas J; Kawano M
    Acc Chem Res; 2013 Feb; 46(2):493-505. PubMed ID: 23252592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing deep-learning training for phase identification in powder X-ray diffractograms.
    Schuetzke J; Benedix A; Mikut R; Reischl M
    IUCrJ; 2021 May; 8(Pt 3):408-420. PubMed ID: 33953927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A laser powder bed fusion system for in situ x-ray diffraction with high-energy synchrotron radiation.
    Uhlmann E; Krohmer E; Schmeiser F; Schell N; Reimers W
    Rev Sci Instrum; 2020 Jul; 91(7):075104. PubMed ID: 32752875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray diffraction measurement of a single nanometre-sized particle levitated in air by an optical-trap sample holder.
    Fukuyama Y; Yasuda N; Sugimoto K; Kimura S
    J Synchrotron Radiat; 2020 Jan; 27(Pt 1):67-74. PubMed ID: 31868738
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Aslandukov A; Aslandukov M; Dubrovinskaia N; Dubrovinsky L
    J Appl Crystallogr; 2022 Oct; 55(Pt 5):1383-1391. PubMed ID: 36249501
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-temperature behavior of natural ferrierite: In-situ synchrotron X-ray powder diffraction study.
    Arletti R; Fantini R; Giacobbe C; Gieré R; Vezzalini G; Vigliaturo R; Quartieri S
    Am Mineral; 2018 Nov; 103(11):1741-1748. PubMed ID: 31439963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bragg Spot Finder (BSF): a new machine-learning-aided approach to deal with spot finding for rapidly filtering diffraction pattern images.
    Dong J; Yin Z; Kreitler D; Bernstein HJ; Jakoncic J
    J Appl Crystallogr; 2024 Jun; 57(Pt 3):670-680. PubMed ID: 38846759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural elucidation of microcrystalline MOFs from powder X-ray diffraction.
    Martí-Rujas J
    Dalton Trans; 2020 Oct; 49(40):13897-13916. PubMed ID: 33047745
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystallographic phase identifier of a convolutional self-attention neural network (CPICANN) on powder diffraction patterns.
    Zhang S; Cao B; Su T; Wu Y; Feng Z; Xiong J; Zhang TY
    IUCrJ; 2024 Jul; 11(Pt 4):634-642. PubMed ID: 38958016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional electron diffraction as a complementary technique to powder X-ray diffraction for phase identification and structure solution of powders.
    Yun Y; Zou X; Hovmöller S; Wan W
    IUCrJ; 2015 Mar; 2(Pt 2):267-82. PubMed ID: 25866663
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Powder Nano-Beam Diffraction in Scanning Electron Microscope: Fast and Simple Method for Analysis of Nanoparticle Crystal Structure.
    Slouf M; Skoupy R; Pavlova E; Krzyzanek V
    Nanomaterials (Basel); 2021 Apr; 11(4):. PubMed ID: 33918700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The crystal structure of paramagnetic copper(II) oxalate (CuC₂O₄): formation and thermal decomposition of randomly stacked anisotropic nano-sized crystallites.
    Christensen AN; Lebech B; Andersen NH; Grivel JC
    Dalton Trans; 2014 Nov; 43(44):16754-68. PubMed ID: 25278188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Constraint-induced direct phasing method.
    Xu H
    Acta Crystallogr A Found Adv; 2017 Jan; 73(Pt 1):54-60. PubMed ID: 28042804
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.