BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36602082)

  • 1. Spectrum and size controllable synthesis of high-quality gold nanorods using 1,7-dihydroxynaphthalene as a reducing agent.
    Guo Y; Liu Q; Wei A; Jiang S; Chen F; Huang J; He Y; Huang G; Wu Z
    Dalton Trans; 2023 Jan; 52(4):1052-1061. PubMed ID: 36602082
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled synthesis of monodisperse gold nanorods with a small diameter of around 10 nm and largest plasmon wavelength of 1200 nm.
    Wei A; OuYang J; Guo Y; Jiang S; Chen F; Huang J; Xiao Q; Wu Z
    Phys Chem Chem Phys; 2023 Aug; 25(31):20843-20853. PubMed ID: 37503681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield synthesis of monodisperse gold nanorods with a tunable plasmon wavelength using 3-aminophenol as the reducing agent.
    Wu Z; Liang Y; Cao L; Guo Q; Jiang S; Mao F; Sheng J; Xiao Q
    Nanoscale; 2019 Dec; 11(47):22890-22898. PubMed ID: 31763638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Seedless synthesis of gold nanorods using resveratrol as a reductant.
    Wang W; Li J; Lan S; Rong L; Liu Y; Sheng Y; Zhang H; Yang B
    Nanotechnology; 2016 Apr; 27(16):165601. PubMed ID: 26954263
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unstable reshaping of gold nanorods prepared by a wet chemical method in the presence of silver nitrate.
    Iqbal M; Tae G
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3355-9. PubMed ID: 17252764
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Overgrowth of gold nanorods by using a binary surfactant mixture.
    Khlebtsov BN; Khanadeev VA; Ye J; Sukhorukov GB; Khlebtsov NG
    Langmuir; 2014 Feb; 30(6):1696-703. PubMed ID: 24460392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of gold nanorods with tunable longitudinal surface plasmon resonance peaks by reductive dopamine.
    Su G; Yang C; Zhu JJ
    Langmuir; 2015 Jan; 31(2):817-23. PubMed ID: 25521416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of core-shell Au@Ag nanorods induced by catecholamines: A comparative study and an analytical application.
    Gorbunova MV; Apyari VV; Dmitrienko SG; Garshev AV
    Anal Chim Acta; 2016 Sep; 936():185-94. PubMed ID: 27566354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive neuro fuzzy selection of important factors for prediction of plasmons in silver nanorods.
    Petković D; Khadimallah MA; Cao Y; Denic N; Vujovic V; Zlatkovic D; Stojanovic J
    Appl Opt; 2022 Apr; 61(10):2864-2868. PubMed ID: 35471371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of bromide in hydrogen peroxide oxidation of CTAB-stabilized gold nanorods in aqueous solutions.
    Zhu Q; Wu J; Zhao J; Ni W
    Langmuir; 2015 Apr; 31(14):4072-7. PubMed ID: 25785656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Uniform Gold Nanorods with Large Width to Realize Ultralow SERS Detection.
    He H; Wu C; Bi C; Song Y; Wang D; Xia H
    Chemistry; 2021 May; 27(27):7549-7560. PubMed ID: 33769618
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of neodymium hydroxide nanotubes and nanorods by soft chemical process.
    Shi W; Yu J; Wang H; Yang J; Zhang H
    J Nanosci Nanotechnol; 2006 Aug; 6(8):2515-9. PubMed ID: 17037865
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of silver(I)-assisted growth of gold nanorods and bipyramids.
    Liu M; Guyot-Sionnest P
    J Phys Chem B; 2005 Dec; 109(47):22192-200. PubMed ID: 16853888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How Stabilizers and Reducing Agents Affect the Formation of Nanogold Amalgams.
    Wang N; Cao P; Ma H; Lin M
    Langmuir; 2021 Jun; 37(25):7681-7688. PubMed ID: 34139839
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CTAB promoted synthesis of Au nanorods--temperature effects and stability considerations.
    Becker R; Liedberg B; Käll PO
    J Colloid Interface Sci; 2010 Mar; 343(1):25-30. PubMed ID: 19954787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of gold nanorods and their functionalization with bovine serum albumin for optical hyperthermia.
    Zhang L; Xia K; Bai YY; Tang Y; Deng Y; Chen J; Qian W; Shen H; Zhang Z; Ju S; He N
    J Biomed Nanotechnol; 2014 Aug; 10(8):1440-9. PubMed ID: 25016644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A plasmonic biosensor array exploiting plasmon coupling between gold nanorods and spheres for domoic acid detection via two methods.
    Nelis JLD; Salvador JP; Marco MP; Elliott CT; Campbell K
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 May; 252():119473. PubMed ID: 33524817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluating Phospholipid-Functionalized Gold Nanorods for In Vivo Applications.
    Roach L; Booth ME; Ingram N; Paterson DA; Batchelor DVB; Moorcroft SCT; Bushby RJ; Critchley K; Coletta PL; Evans SD
    Small; 2021 Apr; 17(13):e2006797. PubMed ID: 33682366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The facile removal of CTAB from the surface of gold nanorods.
    He J; Unser S; Bruzas I; Cary R; Shi Z; Mehra R; Aron K; Sagle L
    Colloids Surf B Biointerfaces; 2018 Mar; 163():140-145. PubMed ID: 29291499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dialysis assisted ligand exchange on gold nanorods: Amplification of the performance of a lateral flow immunoassay for E. coli O157:H7.
    Tao Y; Yang J; Chen L; Huang Y; Qiu B; Guo L; Lin Z
    Mikrochim Acta; 2018 Jul; 185(7):350. PubMed ID: 29967949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.