These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36602120)
1. Antibacterial and antibiofilm mechanisms of carbon dots: a review. Yu M; Li P; Huang R; Xu C; Zhang S; Wang Y; Gong X; Xing X J Mater Chem B; 2023 Jan; 11(4):734-754. PubMed ID: 36602120 [TBL] [Abstract][Full Text] [Related]
2. Antibacterial Carbon Dots: Mechanisms, Design, and Applications. Zhao WB; Liu KK; Wang Y; Li FK; Guo R; Song SY; Shan CX Adv Healthc Mater; 2023 Sep; 12(23):e2300324. PubMed ID: 37178318 [TBL] [Abstract][Full Text] [Related]
3. Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti- Zhao D; Zhang R; Liu X; Li X; Xu M; Huang X; Xiao X Int J Nanomedicine; 2022; 17():937-952. PubMed ID: 35280335 [TBL] [Abstract][Full Text] [Related]
4. Recent progress in carbon dots for anti-pathogen applications in oral cavity. Jiang Y; Yin C; Mo J; Wang X; Wang T; Li G; Zhou Q Front Cell Infect Microbiol; 2023; 13():1251309. PubMed ID: 37780847 [TBL] [Abstract][Full Text] [Related]
5. Cytocompatible Amphipathic Carbon Quantum Dots as Potent Membrane-Active Antibacterial Agents with Low Drug Resistance and Effective Inhibition of Biofilm Formation. Li P; Yu M; Ke X; Gong X; Li Z; Xing X ACS Appl Bio Mater; 2022 Jul; 5(7):3290-3299. PubMed ID: 35700313 [TBL] [Abstract][Full Text] [Related]
7. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity. Sviridova E; Barras A; Addad A; Plotnikov E; Di Martino A; Deresmes D; Nikiforova K; Trusova M; Szunerits S; Guselnikova O; Postnikov P; Boukherroub R Biomater Adv; 2022 Mar; 134():112697. PubMed ID: 35581073 [TBL] [Abstract][Full Text] [Related]
8. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. Du X; Zhang M; Ma Y; Wang X; Liu Y; Huang H; Kang Z J Colloid Interface Sci; 2023 Mar; 634():44-53. PubMed ID: 36528970 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial and antibiofilm properties of graphene and its derivatives. Cao G; Yan J; Ning X; Zhang Q; Wu Q; Bi L; Zhang Y; Han Y; Guo J Colloids Surf B Biointerfaces; 2021 Apr; 200():111588. PubMed ID: 33529928 [TBL] [Abstract][Full Text] [Related]
10. Combination therapy of biogenic C-dots and lysozyme for enhanced antibacterial and antibiofilm activity. Singh A; Verma A; Singh R; Sahoo AK; Samanta SK Nanotechnology; 2021 Feb; 32(8):085104. PubMed ID: 33080579 [TBL] [Abstract][Full Text] [Related]
11. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms. Zacchino SA; Butassi E; Cordisco E; Svetaz LA Phytomedicine; 2017 Dec; 37():14-26. PubMed ID: 29174600 [TBL] [Abstract][Full Text] [Related]
12. Carbon dot-based therapeutics for combating drug-resistant bacteria and biofilm infections in food preservation. Cui F; Ning Y; Wang D; Li J; Li X; Li T Crit Rev Food Sci Nutr; 2024; 64(2):203-219. PubMed ID: 35912471 [TBL] [Abstract][Full Text] [Related]
13. Carbon-Dots-Mediated Improvement of Antimicrobial Activity of Natural Products. Khan B; Zhang J; Durrani S; Wang H; Nawaz A; Durrani F; Ye Y; Wu FG; Lin F ACS Appl Mater Interfaces; 2024 Sep; 16(36):47257-47269. PubMed ID: 39216005 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract. Guan C; Zhang W; Su J; Li F; Chen D; Chen X; Huang Y; Gu R; Zhang C BMC Microbiol; 2023 Jan; 23(1):12. PubMed ID: 36635630 [TBL] [Abstract][Full Text] [Related]
15. Fluorescent carbon dots with a high nitric oxide payload for effective antibacterial activity and bacterial imaging. Liu S; Lv K; Chen Z; Li C; Chen T; Ma D Biomater Sci; 2021 Sep; 9(19):6486-6500. PubMed ID: 34582524 [TBL] [Abstract][Full Text] [Related]
16. Insights into the antibacterial mechanism of iron doped carbon dots. Huang C; Duan M; Shi Y; Liu H; Zhang P; Zuo Y; Yan L; Xu Y; Niu Y J Colloid Interface Sci; 2023 Sep; 645():933-942. PubMed ID: 37178569 [TBL] [Abstract][Full Text] [Related]
17. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects. Sun C; Wang X; Dai J; Ju Y Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232647 [TBL] [Abstract][Full Text] [Related]
18. Shining light on carbon dots: Toward enhanced antibacterial activity for biofilm disruption. Zhang Q; Fu J; Lin H; Xuan G; Zhang W; Chen L; Wang G Biotechnol J; 2024 May; 19(5):e2400156. PubMed ID: 38804136 [TBL] [Abstract][Full Text] [Related]
19. Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination. Chu X; Wu F; Sun B; Zhang M; Song S; Zhang P; Wang Y; Zhang Q; Zhou N; Shen J Colloids Surf B Biointerfaces; 2020 Jun; 190():110930. PubMed ID: 32146275 [TBL] [Abstract][Full Text] [Related]
20. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies. Li W; Thian ES; Wang M; Wang Z; Ren L Adv Sci (Weinh); 2021 Oct; 8(19):e2100368. PubMed ID: 34351704 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]