These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 36602120)

  • 1. Antibacterial and antibiofilm mechanisms of carbon dots: a review.
    Yu M; Li P; Huang R; Xu C; Zhang S; Wang Y; Gong X; Xing X
    J Mater Chem B; 2023 Jan; 11(4):734-754. PubMed ID: 36602120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Screening of Chitosan Derivatives-Carbon Dots Based on Antibacterial Activity and Application in Anti-
    Zhao D; Zhang R; Liu X; Li X; Xu M; Huang X; Xiao X
    Int J Nanomedicine; 2022; 17():937-952. PubMed ID: 35280335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytocompatible Amphipathic Carbon Quantum Dots as Potent Membrane-Active Antibacterial Agents with Low Drug Resistance and Effective Inhibition of Biofilm Formation.
    Li P; Yu M; Ke X; Gong X; Li Z; Xing X
    ACS Appl Bio Mater; 2022 Jul; 5(7):3290-3299. PubMed ID: 35700313
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface modification of carbon dots with tetraalkylammonium moieties for fine tuning their antibacterial activity.
    Sviridova E; Barras A; Addad A; Plotnikov E; Di Martino A; Deresmes D; Nikiforova K; Trusova M; Szunerits S; Guselnikova O; Postnikov P; Boukherroub R
    Biomater Adv; 2022 Mar; 134():112697. PubMed ID: 35581073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria.
    Du X; Zhang M; Ma Y; Wang X; Liu Y; Huang H; Kang Z
    J Colloid Interface Sci; 2023 Mar; 634():44-53. PubMed ID: 36528970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Antibacterial and antibiofilm properties of graphene and its derivatives.
    Cao G; Yan J; Ning X; Zhang Q; Wu Q; Bi L; Zhang Y; Han Y; Guo J
    Colloids Surf B Biointerfaces; 2021 Apr; 200():111588. PubMed ID: 33529928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination therapy of biogenic C-dots and lysozyme for enhanced antibacterial and antibiofilm activity.
    Singh A; Verma A; Singh R; Sahoo AK; Samanta SK
    Nanotechnology; 2021 Feb; 32(8):085104. PubMed ID: 33080579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid combinations containing natural products and antimicrobial drugs that interfere with bacterial and fungal biofilms.
    Zacchino SA; Butassi E; Cordisco E; Svetaz LA
    Phytomedicine; 2017 Dec; 37():14-26. PubMed ID: 29174600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antibacterial and antibiofilm potential of Lacticaseibacillus rhamnosus YT and its cell-surface extract.
    Guan C; Zhang W; Su J; Li F; Chen D; Chen X; Huang Y; Gu R; Zhang C
    BMC Microbiol; 2023 Jan; 23(1):12. PubMed ID: 36635630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescent carbon dots with a high nitric oxide payload for effective antibacterial activity and bacterial imaging.
    Liu S; Lv K; Chen Z; Li C; Chen T; Ma D
    Biomater Sci; 2021 Sep; 9(19):6486-6500. PubMed ID: 34582524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal and Metal Oxide Nanomaterials for Fighting Planktonic Bacteria and Biofilms: A Review Emphasizing on Mechanistic Aspects.
    Sun C; Wang X; Dai J; Ju Y
    Int J Mol Sci; 2022 Sep; 23(19):. PubMed ID: 36232647
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genipin cross-linked carbon dots for antimicrobial, bioimaging and bacterial discrimination.
    Chu X; Wu F; Sun B; Zhang M; Song S; Zhang P; Wang Y; Zhang Q; Zhou N; Shen J
    Colloids Surf B Biointerfaces; 2020 Jun; 190():110930. PubMed ID: 32146275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Design for Antibacterial Materials: From Fundamentals to Advanced Strategies.
    Li W; Thian ES; Wang M; Wang Z; Ren L
    Adv Sci (Weinh); 2021 Oct; 8(19):e2100368. PubMed ID: 34351704
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Injectable self-healing hydrogel fabricated from antibacterial carbon dots and ɛ-polylysine for promoting bacteria-infected wound healing.
    Mou C; Wang X; Teng J; Xie Z; Zheng M
    J Nanobiotechnology; 2022 Aug; 20(1):368. PubMed ID: 35953858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Dots for Killing Microorganisms: An Update since 2019.
    Lin F; Wang Z; Wu FG
    Pharmaceuticals (Basel); 2022 Oct; 15(10):. PubMed ID: 36297348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview.
    Anand A; Manavalan G; Mandal RP; Chang HT; Chiou YR; Huang CC
    Curr Pharm Des; 2019; 25(46):4848-4860. PubMed ID: 31840599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design of nanoengineered antibacterial polymers for biomedical applications.
    Borjihan Q; Dong A
    Biomater Sci; 2020 Dec; 8(24):6867-6882. PubMed ID: 32756731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Acid-activated ROS generator with folic acid targeting for bacterial biofilm elimination.
    Yu M; Zhang G; Li P; Lu H; Tang W; Yang X; Huang R; Yu F; Wu W; Xiao Y; Xing X
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112225. PubMed ID: 34225870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibiofilm activity of host defence peptides: complexity provides opportunities.
    Hancock REW; Alford MA; Haney EF
    Nat Rev Microbiol; 2021 Dec; 19(12):786-797. PubMed ID: 34183822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospinning membranes with Au@carbon dots: Low toxicity and efficient antibacterial photothermal therapy.
    Tian H; Hong J; Li C; Qiu Y; Li M; Qin Z; Ghiladi RA; Yin X
    Biomater Adv; 2022 Nov; 142():213155. PubMed ID: 36308860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.