These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 36602120)

  • 21. Carbon Dots for Bacterial Detection and Antibacterial Applications-A Minireview.
    Anand A; Manavalan G; Mandal RP; Chang HT; Chiou YR; Huang CC
    Curr Pharm Des; 2019; 25(46):4848-4860. PubMed ID: 31840599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Carbon Dots for Killing Microorganisms: An Update since 2019.
    Lin F; Wang Z; Wu FG
    Pharmaceuticals (Basel); 2022 Oct; 15(10):. PubMed ID: 36297348
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A novel fluorescent traceable carbon quantum dots with selective antibacterial activity against
    Wang J; Wang Y; Zhang H; Zhu W; Liu L
    Exp Biol Med (Maywood); 2023 Dec; 248(23):2227-2236. PubMed ID: 38073544
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of nanoengineered antibacterial polymers for biomedical applications.
    Borjihan Q; Dong A
    Biomater Sci; 2020 Dec; 8(24):6867-6882. PubMed ID: 32756731
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insights into antibiofilm mechanisms of phytochemicals: Prospects in the food industry.
    Uddin Mahamud AGMS; Nahar S; Ashrafudoulla M; Park SH; Ha SD
    Crit Rev Food Sci Nutr; 2024; 64(6):1736-1763. PubMed ID: 36066482
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Acid-activated ROS generator with folic acid targeting for bacterial biofilm elimination.
    Yu M; Zhang G; Li P; Lu H; Tang W; Yang X; Huang R; Yu F; Wu W; Xiao Y; Xing X
    Mater Sci Eng C Mater Biol Appl; 2021 Aug; 127():112225. PubMed ID: 34225870
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Antibiofilm activity of host defence peptides: complexity provides opportunities.
    Hancock REW; Alford MA; Haney EF
    Nat Rev Microbiol; 2021 Dec; 19(12):786-797. PubMed ID: 34183822
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospinning membranes with Au@carbon dots: Low toxicity and efficient antibacterial photothermal therapy.
    Tian H; Hong J; Li C; Qiu Y; Li M; Qin Z; Ghiladi RA; Yin X
    Biomater Adv; 2022 Nov; 142():213155. PubMed ID: 36308860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis, properties and mechanism of carbon dots-based nano-antibacterial materials.
    Zhu H; Peng N; Liang X; Yang S; Cai S; Chen Z; Yang Y; Wang J; Wang Y
    Biomed Mater; 2023 Sep; 18(6):. PubMed ID: 37722396
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boric Acid-Functionalized Carbon Dots as a High-Performance Antibacterial Agent against
    Zhao L; Ma Y; Sun Z; Zhang X; Liu M
    Langmuir; 2023 Dec; 39(50):18302-18310. PubMed ID: 38055953
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quaternized carbon quantum dots with broad-spectrum antibacterial activity for the treatment of wounds infected with mixed bacteria.
    Zhao C; Wang X; Yu L; Wu L; Hao X; Liu Q; Lin L; Huang Z; Ruan Z; Weng S; Liu A; Lin X
    Acta Biomater; 2022 Jan; 138():528-544. PubMed ID: 34775123
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Antibacterial and Antibiofilm Potency of XF Drugs, Impact of Photodynamic Activation and Synergy With Antibiotics.
    Board-Davies EL; Rhys-Williams W; Hynes D; Williams D; Farnell DJJ; Love W
    Front Cell Infect Microbiol; 2022; 12():904465. PubMed ID: 35846763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Drug delivery approaches for enhanced antibiofilm therapy.
    Wang T; Cornel EJ; Li C; Du J
    J Control Release; 2023 Jan; 353():350-365. PubMed ID: 36473605
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Curcumin carbon dots inhibit biofilm formation and expression of esp and gelE genes of Enterococcusfaecium.
    Sadaqat MH; Mobarez AM; Nikkhah M
    Microb Pathog; 2022 Dec; 173(Pt A):105860. PubMed ID: 36341845
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fluorescent Carbon Dot-Curcumin Nanocomposites for Remarkable Antibacterial Activity with Synergistic Photodynamic and Photothermal Abilities.
    Yan H; Zhang B; Zhang Y; Su R; Li P; Su W
    ACS Appl Bio Mater; 2021 Sep; 4(9):6703-6718. PubMed ID: 35006973
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Engineering efficient artificial nanozyme based on chitosan grafted Fe-doped-carbon dots for bacteria biofilm eradication.
    Pan T; Chen H; Gao X; Wu Z; Ye Y; Shen Y
    J Hazard Mater; 2022 Aug; 435():128996. PubMed ID: 35487006
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Micro-/Nanorobots in Antimicrobial Applications: Recent Progress, Challenges, and Opportunities.
    Zhang Z; Wang L; Chan TKF; Chen Z; Ip M; Chan PKS; Sung JJY; Zhang L
    Adv Healthc Mater; 2022 Mar; 11(6):e2101991. PubMed ID: 34907671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Self-assembling diphenylalanine peptide nanotubes selectively eradicate bacterial biofilm infection.
    Porter SL; Coulter SM; Pentlavalli S; Thompson TP; Laverty G
    Acta Biomater; 2018 Sep; 77():96-105. PubMed ID: 30031161
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Graphene oxide and carbon dots as broad-spectrum antimicrobial agents - a minireview.
    Anand A; Unnikrishnan B; Wei SC; Chou CP; Zhang LZ; Huang CC
    Nanoscale Horiz; 2019 Jan; 4(1):117-137. PubMed ID: 32254148
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Conjugating AIE-featured AuAg nanoclusters with highly luminescent carbon dots for improved visible-light-driven antibacterial activity.
    Liu N; Wang Y; Wang Z; He Q; Liu Y; Dou X; Yin Z; Li Y; Zhu H; Yuan X
    Nanoscale; 2022 Jun; 14(22):8183-8191. PubMed ID: 35621160
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.