These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 36602120)
41. Enzymatic dispersion of biofilms: An emerging biocatalytic avenue to combat biofilm-mediated microbial infections. Ramakrishnan R; Singh AK; Singh S; Chakravortty D; Das D J Biol Chem; 2022 Sep; 298(9):102352. PubMed ID: 35940306 [TBL] [Abstract][Full Text] [Related]
42. Antibacterial Activity and Synergetic Mechanism of Carbon Dots against Gram-Positive and -Negative Bacteria. Liang J; Li W; Chen J; Huang X; Liu Y; Zhang X; Shu W; Lei B; Zhang H ACS Appl Bio Mater; 2021 Sep; 4(9):6937-6945. PubMed ID: 35006993 [TBL] [Abstract][Full Text] [Related]
43. Antibacterial functionalized carbon dots and their application in bacterial infections and inflammation. Fang M; Lin L; Zheng M; Liu W; Lin R J Mater Chem B; 2023 Oct; 11(39):9386-9403. PubMed ID: 37720998 [TBL] [Abstract][Full Text] [Related]
44. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. Ladhari S; Vu NN; Boisvert C; Saidi A; Nguyen-Tri P ACS Appl Bio Mater; 2023 Apr; 6(4):1398-1430. PubMed ID: 36912908 [TBL] [Abstract][Full Text] [Related]
45. Machine Learning Tools to Assist the Synthesis of Antibacterial Carbon Dots. Bian Z; Bao T; Sun X; Wang N; Mu Q; Jiang T; Yu Z; Ding J; Wang T; Zhou Q Int J Nanomedicine; 2024; 19():5213-5226. PubMed ID: 38855729 [TBL] [Abstract][Full Text] [Related]
46. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella typhimurium. Bag A; Chattopadhyay RR Lett Appl Microbiol; 2017 Nov; 65(5):366-372. PubMed ID: 28815637 [TBL] [Abstract][Full Text] [Related]
47. Carbon dots-releasing hydrogels with antibacterial activity, high biocompatibility, and fluorescence performance as candidate materials for wound healing. Cui F; Sun J; Ji J; Yang X; Wei K; Xu H; Gu Q; Zhang Y; Sun X J Hazard Mater; 2021 Mar; 406():124330. PubMed ID: 33144016 [TBL] [Abstract][Full Text] [Related]
48. Recent nanotechnology-based strategies for interfering with the life cycle of bacterial biofilms. Wu J; Zhang B; Lin N; Gao J Biomater Sci; 2023 Feb; 11(5):1648-1664. PubMed ID: 36723075 [TBL] [Abstract][Full Text] [Related]
49. Synthesis of curcumin-quaternized carbon quantum dots with enhanced broad-spectrum antibacterial activity for promoting infected wound healing. Wu L; Gao Y; Zhao C; Huang D; Chen W; Lin X; Liu A; Lin L Biomater Adv; 2022 Feb; 133():112608. PubMed ID: 35525745 [TBL] [Abstract][Full Text] [Related]
51. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Khan F; Pham DTN; Oloketuyi SF; Manivasagan P; Oh J; Kim YM Colloids Surf B Biointerfaces; 2020 Jan; 185():110627. PubMed ID: 31732391 [TBL] [Abstract][Full Text] [Related]
52. Nanomaterials-Enabled Physicochemical Antibacterial Therapeutics: Toward the Antibiotic-Free Disinfections. Xing Z; Guo J; Wu Z; He C; Wang L; Bai M; Liu X; Zhu B; Guan Q; Cheng C Small; 2023 Dec; 19(50):e2303594. PubMed ID: 37626465 [TBL] [Abstract][Full Text] [Related]
53. Quaternized carbon dots with enhanced antimicrobial ability towards Gram-negative bacteria for the treatment of acute peritonitis caused by Zhang X; Wu P; Hao X; Liu J; Huang Z; Weng S; Chen W; Huang L; Huang J J Mater Chem B; 2023 Sep; 11(32):7696-7706. PubMed ID: 37458409 [TBL] [Abstract][Full Text] [Related]
54. Applications of Antimicrobial Photodynamic Therapy against Bacterial Biofilms. Songca SP; Adjei Y Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328629 [TBL] [Abstract][Full Text] [Related]
55. Small Carbohydrate Derivatives as Potent Antibiofilm Agents. Singh K; Kulkarni SS J Med Chem; 2022 Jul; 65(13):8525-8549. PubMed ID: 35777073 [TBL] [Abstract][Full Text] [Related]
56. Carbon Dots as an Emergent Class of Antimicrobial Agents. Ghirardello M; Ramos-Soriano J; Galan MC Nanomaterials (Basel); 2021 Jul; 11(8):. PubMed ID: 34443713 [TBL] [Abstract][Full Text] [Related]
57. Specific Anti-biofilm Activity of Carbon Quantum Dots by Destroying Liang G; Shi H; Qi Y; Li J; Jing A; Liu Q; Feng W; Li G; Gao S Int J Nanomedicine; 2020; 15():5473-5489. PubMed ID: 32801701 [TBL] [Abstract][Full Text] [Related]
58. One-step synthesis of carbon dots for selective bacterial inactivation and bacterial differentiation. Gao Z; Yang D; Wan Y; Yang Y Anal Bioanal Chem; 2020 Feb; 412(4):871-880. PubMed ID: 31901958 [TBL] [Abstract][Full Text] [Related]
59. Isolation, Characterization, and Antibiofilm Activity of Pigments Synthesized by Rhodococcus sp. SC1. Çobanoğlu Ş; Yazıcı A Curr Microbiol; 2021 Dec; 79(1):15. PubMed ID: 34905097 [TBL] [Abstract][Full Text] [Related]
60. The Application of Cell-Penetrating-Peptides in Antibacterial Agents. Chen H; Battalapalli D; Draz MS; Zhang P; Ruan Z Curr Med Chem; 2021; 28(29):5896-5925. PubMed ID: 34225605 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]