BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 36602146)

  • 1. Recent advances in gold electrode fabrication for low-resource setting biosensing.
    Zamani M; Klapperich CM; Furst AL
    Lab Chip; 2023 Mar; 23(5):1410-1419. PubMed ID: 36602146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low-cost goldleaf electrode as a platform for Escherichia coli immunodetection.
    Podunavac I; Kukkar M; Léguillier V; Rizzotto F; Pavlovic Z; Janjušević L; Costache V; Radonic V; Vidic J
    Talanta; 2023 Jul; 259():124557. PubMed ID: 37080072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene derivative-based ink advances inkjet printing technology for fabrication of electrochemical sensors and biosensors.
    Nalepa MA; Panáček D; Dědek I; Jakubec P; Kupka V; Hrubý V; Petr M; Otyepka M
    Biosens Bioelectron; 2024 Jul; 256():116277. PubMed ID: 38613934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface Requirements for Optimal Biosensing with Disposable Gold Electrodes.
    Zamani M; Yang V; Maziashvili L; Fan G; Klapperich CM; Furst AL
    ACS Meas Sci Au; 2022 Apr; 2(2):91-95. PubMed ID: 35479101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and functionalization of PCB gold electrodes suitable for DNA-based electrochemical sensing.
    Salvo P; Henry OY; Dhaenens K; Acero Sanchez JL; Gielen A; Werne Solnestam B; Lundeberg J; O'Sullivan CK; Vanfleteren J
    Biomed Mater Eng; 2014; 24(4):1705-14. PubMed ID: 24948454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond traditional biosensors: Recent advances in gold nanoparticles modified electrodes for biosensing applications.
    Siciliano G; Alsadig A; Chiriacò MS; Turco A; Foscarini A; Ferrara F; Gigli G; Primiceri E
    Talanta; 2024 Feb; 268(Pt 1):125280. PubMed ID: 37862755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzyme Immobilization by Inkjet Printing on Reagentless Biosensors for Electrochemical Phosphate Detection.
    Zhang D; Bai Y; Niu H; Chen L; Xiao J; Guo Q; Jia P
    Biosensors (Basel); 2024 Mar; 14(4):. PubMed ID: 38667161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Electrode-Based Biosensing Enabled by Biocompatible Surface Modification with DNA and Proteins.
    Karbelkar A; Ahlmark R; Zhou X; Austin K; Fan G; Yang VY; Furst A
    Bioconjug Chem; 2023 Feb; 34(2):358-365. PubMed ID: 36633230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Printed and flexible biosensor for antioxidants using interdigitated ink-jetted electrodes and gravure-deposited active layer.
    Pavinatto FJ; Paschoal CW; Arias AC
    Biosens Bioelectron; 2015 May; 67():553-9. PubMed ID: 25301685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Developments in the Design and Fabrication of Electrochemical Biosensors Using Functional Materials and Molecules.
    Theyagarajan K; Kim YJ
    Biosensors (Basel); 2023 Mar; 13(4):. PubMed ID: 37185499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inkjet printing for biosensor fabrication: combining chemistry and technology for advanced manufacturing.
    Li J; Rossignol F; Macdonald J
    Lab Chip; 2015 Jun; 15(12):2538-58. PubMed ID: 25953427
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexaammineruthenium (II)/(III) as alternative redox-probe to Hexacyanoferrat (II)/(III) for stable impedimetric biosensing with gold electrodes.
    Schrattenecker JD; Heer R; Melnik E; Maier T; Fafilek G; Hainberger R
    Biosens Bioelectron; 2019 Feb; 127():25-30. PubMed ID: 30583283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple and sensitive aptasensor based on quantum dot-coated silica nanospheres and the gold screen-printed electrode.
    Li Y; Deng L; Deng C; Nie Z; Yang M; Si S
    Talanta; 2012 Sep; 99():637-42. PubMed ID: 22967605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Printed Graphene Electrochemical Biosensors Fabricated by Inkjet Maskless Lithography for Rapid and Sensitive Detection of Organophosphates.
    Hondred JA; Breger JC; Alves NJ; Trammell SA; Walper SA; Medintz IL; Claussen JC
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11125-11134. PubMed ID: 29504744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low-cost and rapid prototyping of integrated electrochemical microfluidic platforms using consumer-grade off-the-shelf tools and materials.
    Mohd Asri MA; Mak WC; Norazman SA; Nordin AN
    Lab Chip; 2022 May; 22(9):1779-1792. PubMed ID: 35293400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA biosensing with 3D printing technology.
    Loo AH; Chua CK; Pumera M
    Analyst; 2017 Jan; 142(2):279-283. PubMed ID: 28001145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward the development of smart and low cost point-of-care biosensors based on screen printed electrodes.
    Ahmed MU; Hossain MM; Safavieh M; Wong YL; Abd Rahman I; Zourob M; Tamiya E
    Crit Rev Biotechnol; 2016; 36(3):495-505. PubMed ID: 25578718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of gold-sputtered electrofluidic paper on wire-included analytical platforms for glucose biosensing.
    Núnez-Bajo E; Carmen Blanco-López M; Costa-García A; Teresa Fernández-Abedul M
    Biosens Bioelectron; 2017 May; 91():824-832. PubMed ID: 28157656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Beyond the Gold-Thiol Paradigm: Exploring Alternative Interfaces for Electrochemical Nucleic Acid-Based Sensing.
    Arroyo-Currás N
    ACS Sens; 2024 May; 9(5):2228-2236. PubMed ID: 38661283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All-Inkjet-Printed Flexible Nanobio-Devices with Efficient Electrochemical Coupling Using Amphiphilic Biomaterials.
    Kang TH; Lee SW; Hwang K; Shim W; Lee KY; Lim JA; Yu WR; Choi IS; Yi H
    ACS Appl Mater Interfaces; 2020 May; 12(21):24231-24241. PubMed ID: 32353230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.