These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36602234)

  • 61. The correlations among bond ionicity, lattice energy and microwave dielectric properties of (Nd(1-x)La(x))NbO4 ceramics.
    Zhang P; Zhao Y; Li L
    Phys Chem Chem Phys; 2015 Jul; 17(26):16692-8. PubMed ID: 26063124
    [TBL] [Abstract][Full Text] [Related]  

  • 62. The Local and Electronic Structure Study of Lu
    Chen Y; Li Z; Ji N; Wei C; Duan X; Jiang H
    Nanomaterials (Basel); 2023 Jan; 13(2):. PubMed ID: 36678077
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Creating σ-holes through the formation of beryllium bonds.
    Brea O; Mó O; Yáñez M; Alkorta I; Elguero J
    Chemistry; 2015 Sep; 21(36):12676-82. PubMed ID: 26212472
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Bonding properties of molecular cerium oxides tuned by the 4f-block from ab initio perspective.
    Chen Z; Yang J
    J Chem Phys; 2022 Jun; 156(21):211101. PubMed ID: 35676135
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enthalpies of Solution of BeO(c) in HF(aq) and in HCl(aq).
    Kilday MV; Prosen EJ; Wagman DD
    J Res Natl Bur Stand A Phys Chem; 1973; 77A(2):217-225. PubMed ID: 32189736
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The Orbital Origins of Chemical Bonding in Ge-Sb-Te Phase-Change Materials.
    Hempelmann J; Müller PC; Ertural C; Dronskowski R
    Angew Chem Int Ed Engl; 2022 Apr; 61(17):e202115778. PubMed ID: 35007401
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Using beryllium bonds to change halogen bonds from traditional to chlorine-shared to ion-pair bonds.
    Alkorta I; Elguero J; Mó O; Yáñez M; Del Bene JE
    Phys Chem Chem Phys; 2015 Jan; 17(3):2259-67. PubMed ID: 25486548
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Epitaxial Growth of GaN Core and InGaN/GaN Multiple Quantum Well Core/Shell Nanowires on a Thermally Conductive Beryllium Oxide Substrate.
    Johar MA; Waseem A; Hassan MA; Bagal IV; Abdullah A; Ha JS; Lee JK; Ryu SW
    ACS Omega; 2020 Jul; 5(28):17753-17760. PubMed ID: 32715262
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Chemical bonding in transition metal complexes with beryllium ligands [(PMe(3))(2)M-BeCl(2)], [(PMe(3))(2)M-BeClMe], and [(PMe(3))(2)M-BeMe(2)] (M = Ni, Pd, Pt).
    Parameswaran P; Frenking G
    J Phys Chem A; 2010 Aug; 114(33):8529-35. PubMed ID: 20038110
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Penta- and hexa-coordinated beryllium and phosphorus in high-pressure modifications of CaBe
    Pakhomova A; Aprilis G; Bykov M; Gorelova L; Krivovichev SS; Belov MP; Abrikosov IA; Dubrovinsky L
    Nat Commun; 2019 Jun; 10(1):2800. PubMed ID: 31243286
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Protective role of B cells in sterile particulate-induced lung injury.
    Atif SM; Mack DG; McKee AS; Rangel-Moreno J; Martin AK; Getahun A; Maier LA; Cambier JC; Tuder R; Fontenot AP
    JCI Insight; 2019 May; 5(12):. PubMed ID: 31094704
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The location of the chemical bond. Application of long covalent bond theory to the structure of silica.
    Miller SA
    Front Chem; 2023; 11():1123322. PubMed ID: 36874065
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A structure-based analysis of the vibrational spectra of nitrosyl ligands in transition-metal coordination complexes and clusters.
    De La Cruz C; Sheppard N
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jan; 78(1):7-28. PubMed ID: 21123107
    [TBL] [Abstract][Full Text] [Related]  

  • 74. [A experiment research of beryllium oxide induced oxidative lung injury and the protective effects of LBP in rats].
    Liu Z; Zhang Q; Wang Y; Wei C; Yan Q; Gong A; Guo X
    Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2015 Jul; 33(7):512-6. PubMed ID: 26653647
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Combining covalent bonding and electrostatic attraction to achieve highly viable species with ultrashort beryllium-beryllium distances: a computational design.
    Qin ZZ; Wang Q; Yuan C; Yang YT; Zhao XF; Li D; Liu P; Wu YB
    Dalton Trans; 2018 Mar; 47(13):4707-4713. PubMed ID: 29537009
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nature of Beryllium, Magnesium, and Zinc Bonds in Carbene⋯MX
    Sagan F; Mitoraj M; Jabłoński M
    Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498996
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Carbon monoxide bonding with BeO and BeCO3 : surprisingly high CO stretching frequency of OCBeCO3.
    Chen M; Zhang Q; Zhou M; Andrada DM; Frenking G
    Angew Chem Int Ed Engl; 2015 Jan; 54(1):124-8. PubMed ID: 25369759
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Modulating weak intramolecular interactions through the formation of beryllium bonds: complexes between squaric acid and BeH2.
    Montero-Campillo MM; Lamsabhi AM; Mó O; Yáñez M
    J Mol Model; 2013 Jul; 19(7):2759-66. PubMed ID: 23053013
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Electronic structures and physical properties of double perovskite A
    He D; Du X; Mei H; Zhong Y; Cheng N
    J Phys Condens Matter; 2020 Mar; 32(13):135702. PubMed ID: 31791026
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Ab initio molecular dynamics study of high-pressure melting of beryllium oxide.
    Li D; Zhang P; Yan J
    Sci Rep; 2014 Apr; 4():4707. PubMed ID: 24759594
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.